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Preface

This textbook, the first in a series of four, was written for the Aviation Maintenance Technician
student of today. It is based on the real-world requirements of today’s aviation industry. At
the same time, it does not eliminate the traditional subject areas taught since the first Aviation
Maintenance schools were certificated.

This series of textbooks has evolved through careful study and gathering of information offered
by the Federal Aviation Administration, the Blue Ribbon Panel, the Joint Task Analysis report,
industry involvement, and AMT schools nationwide.

The series is designed to fulfill both current and future requirements for a course of study in
Aviation Maintenance Technology.

Textbooks, by their very nature, must be general in their overall coverage of a subject area.
As always, the aircraft manufacturer is the sole source of operation, maintenance, repair and
overhaul information. Their manuals are approved by the FAA and must always be followed.
You may not use any material presented in this or any other textbook as a manual for actual
operation, maintenance, or repair.

The writers, individuals and companies which have contributed to the production of this
textbook have done so in the spirit of cooperation for the good of the industry. To the best of their
abilities, they have tried to provide accuracy, honesty and pertinence in the presentation of the
material. However, as with all human endeavors, errors and omissions can show up in the most
unexpected places. If any exist, they are unintentional. Please bring them to our attention. >~

Email us at comments@avotek.com for comments or suggestions.
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General

Mathematics

Section 1

Introduction to Mathematics

The use of mathematics is so interwoven into
nearly every aspect of everyday life that we
seldom, if ever, fully realize how very helpless
we would be in the performance of most of our
daily work without the knowledge of at least
the simplest form of mathematics. Performing
mathematical computations with success
requires an understanding of the correct proce-
dures and continued practice in the use of those
mathematical procedures.

Aviation technicians are continually required
to perform tasks that require accurate math-
ematical computations. Tolerances in aircraft
and engine components are often so criti-
cal that it requires measurements to within
a thousandth or ten-thousandth of an inch.
Because of the close tolerances that must be
adhered to, it is critical that aviation main-
tenance personal be able to make accurate
measurements and precise mathematical cal-
culations.

Mathematics may be thought of as a tool
kit, with each mathematical operation in the
solving of a problem being compared to the
use of one of the tools. The basic operations
of addition, subtraction, multiplication, and
division are the tools available to aid us in
the solution of any particular problem. With
today's easy access to hand-held calculators
capable of doing extremely complex prob-
lems involving multiple variables, using
paper and pencil seems outdated. However,
the ability to perform longhand calculations
is very useful when no calculator is avail-
able.

Learning
Objectives

REVIEW

*Whole numbers and
principle operations

«Decimals: numbers,
fractions, rounding

s Fractions, common
denominator and
arithmetic operations

*Measurement types

DESCRIBE
» Mixed numbers and
typical operations

«Percentage, ratio
and proportion and
their applications

EXPLAIN

*How to find and
compute numerical
powers and roots

« Trigonometric
functions in aviation

APPLY

«Find the area of
geometric shapes

*Measure the volume
of a solid

*Read and interpret
charts and graphs

Left. Basic math skills

are essential to work-
ing in a production

or maintenance envi-
ronment.
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The Number Systems

The decimal system. From the Latin word
decimus, meaning tenth, the decimal system
is a number system using combinations of the
ten numbers 0 through 9. While it may sound
silly to modern man, it is speculated that the
ten number decimal system was chosen by
early man because he had ten digits on his
hands that could be used to help him count
and keep track of numbers.

In order to provide an infinite quantity of
numbers, the decimal system allows the
reuse of the ten base numbers (0 through 9)
more than one time.

Above the number nine, two base numbers
are used together to make the number ten
(10), followed by eleven (11), and so on until
all of the ten base numbers have been used
in all of the possible combinations of two
numbers. Combinations of two numbers that
begin with the number 1 are referred to as
teens; those that begin with the number 2 are
twenties; numbers beginning with 3 are the
thirties; followed in order by the forties, fif-
ties, sixties, seventies, eighties, and nineties.

After all combinations of two numbers are
used, the numbers are combined in groups of
three base numbers. The first of these numbers
is 100, and after changing one number at a time
until all possible combinations of three num-
bers are used, the last possible combination is
the number 999. These numbers are referred
to as hundreds, beginning with one hundred
(100), two hundred (200), and continuing on to
nine hundred (900). When used in combina-
tion, the number is referred to by its hundred
value first, then its ten value, and finally by its
base number. For example, the number 843 is
referred to as eight hundred forty-three.

By continuing to increase the number of com-
binations, the decimal system can be used to
provide theinfinite quantity of numbers, which
was previously mentioned. Combinations of
four numbers are thousands; five numbers are
ten thousands, and six numbers are referred
to as hundred thousands. The next combina-
tion above the thousands are the millions, fol-
lowed by billions, trillions, quadrillions, and
so forth. A thousand thousands is a million.
A thousand millions is a billion, a thousand
billions is a trillion, and the possibilities con-
tinue to infinity.

Numbers of less than 0 are possible using the
decimal numbering system by identifying
them with a negative (-) sign. The numbers
used are the same as those above 0, with the
base numbers followed by tens, hundreds, and
so on to infinity. By adding the negative sign

any number can be made to be less than 0, with
the exception of the number 0 itself. Negative
numbers are covered in greater detail in the
signed numbers section of this chapter.

Between any two numbers in the decimal system
are fractions or pieces of the quantity between
the two numbers. For example, if all numbers
were spaced at equal distances between each
other, the distance between each number would
be divided into fractional parts. In the decimal
system there are two forms of fractions: com-
mon fractions and decimal fractions.

Common fractions are used when the imagi-
nary spaces between numbers are divided into
equal distances such as thirds (where the space
is divided into three equal segments), fourths
(four equal segments), or any other number. If,
as an example, the imaginary distance between
two numbers were divided into thirds, one of
the segments of that division would be one-
third (1/3). Two of those segments would be
two-thirds (2/3). Three of the segments (or
three-thirds) in this example would be equal
to the distance between the two numbers, and
therefore is equal to one. Common fractions are
discussed in greater detail in section 6 of this
chapter titled Common Fractions.

Decimal fractions are created when the
imaginary space between two numbers is
divided into ten (or a multiple of 10) equal
parts, and are written as a number after a
period known as a decimal point. For exam-
ple, 0.1 is one-tenth, 0.2 is two-tenths, and so
on. When two numbers are written after the
decimal point, the decimal fraction is in hun-
dredths. For example, 0.01 is one-hundredth,
and 0.45 is forty-five one-hundredths. Three
numbers after the decimal point are thou-
sandths, four numbers become ten thou-
sandths, and so on into the millionths, bil-
lionths, etc. Section 4 of this chapter covers
decimal fractions in greater detail.

The binary system. Binary is a numbering
system that uses only two numbers (usually
the numbers one [1] and zero [0]). The binary
system became particularly important with
the advent of, and advancement in, pocket
calculators and computer technology, where
circuits within the calculator or computer are
either switched ON or OFF to perform a given
task or function. By converting switch posi-
tions (ON or OFF) to mathematical numbers
(1 for ON or 0 for OFF), computer systems
can be designed, programmed, and operated
using combinations of only two numbers.

The principle of operation of the binary sys-
tem is quite simple. While reading the
following paragraphs, use Table 1-1-1 to help
in understanding this system, and imagine



Binary numbers Decimal
6413216 | 8 | 4| 2 |1 Numbers
0/0]0]0]0]|0]1 1
0/,0]0]0]0|1]0O0 2
0jo0jO0 00O |11 3
0Ojojo0joOo]T]0]O 4
0Ojojo0jO0 1T ]0] 1 5
ojoj1]1]0]1 1 27
0O/1]1]0]0]0]O0 48
1/]0] 1|11 ,0]0 92
1|1 ]1]01 01 117

Table 1-1-1. Conversion of binary numbers into
decimal numbers.

each number as a switch in a calculator being
either ON or OFF.

e If only one switch exists, it can be either
OFF or ON. If it is OFF, it equates to zero,
whereas if it is ON, it equates to one.

If two switches exist, the second switch is
equal to twice the value of the first switch,
or in this case two. Thus, if the first switch
is OFF, and the second is ON, it equates

to a value of two. If both switches are ON,
then the two, represented by the second
switch, and the one, represented by the
first, totaled together would equal three
(since two plus one equals three).

If more than two switches exist, each
switch is equal to twice the value of the
switch before it. Therefore, the third
switch would be equal to four, the fourth
equal to eight, the fifth equal to 16, and
so on. By adding the numbers of the ON
switches only, a total can be derived.

Section 2
Whole Numbers

In the previous section, the decimal system was
described as the base numbers 0 through 9, and
combinations of these numbers. These num-
bers (base numbers and combinations of base
numbers) are referred to as whole numbers or
integers (as opposed to common or decimal frac-
tions, which will be discussed later in this chap-
ter). To be of any functional use, whole numbers
are calculated or manipulated using addition,
subtraction, multiplication, and division.

Addition. The process of finding the combined
total amount of two or more numbers is called
addition. The resultant total is called the sum.
Addition is indicated by the plus (+) symbol.

General Mathematics | 1-3

When adding several whole numbers, such as
46, 92, and 332, these numbers contain units of
value known as ones, tens, and hundreds, etc.
These units are placed in columns so that they
correspond to their proper value.

EXAMPLE:
hundreds tens ones
4 6
9 2
3 3 2
4 7 0

The sum, which is the total of these three whole
numbers, is then 4 hundreds, 7 tens, and 0 ones,
or commonly called four-hundred seventy. The
addition is straightforward in that the 6, 2, and 2
are totaled. These figures equal 10, or one unit of
ten and zero ones. This one unit of ten is carried,
or transferred, to the tens column and added
with the tens column figures. The 4, 9, and 3,
plus the one unit of ten from the ones column,
are added and totals to 17 units of ten. Ten units
of ten equal 100, therefore, if we have 17 units of
ten, we in effect have one unit of hundreds and
seven units of ten. The one unit of hundreds is
transferred to the hundreds column and added
to the three units of hundreds that are already
there. This total is four units of hundreds, seven
units of ten, and zero units of one in value. This
same type of addition operation is used with all
units, including 1,000, 10,000, 100,000, etc.

To check addition, either add the figures again in
the same order, or add them in reverse order.

Subtraction. Subtraction is the process of find-
ing the difference between two numbers by
taking the quantity of one number away from
that of another number. The number which is
subtracted is called the subtrahend, the number
from which the subtrahend is subtracted is the
minuend, and the resulting number is called
the remainder. When first learning subtraction,
problems are normally given where the minu-
end is larger than the subtrahend. However,
this is not always the case in subtraction, which
will be seen later in this chapter. Subtraction is
indicated by the minus (-) symbol.

To find the remainder, write the subtrahend
under the minuend, as in addition. Beginning
at the right, subtract each figure in the subtrahend
from the figure above it and write the individual
remainder below in the same column. When the
process is completed, the number below the sub-
trahend is the remainder.

The process of subtraction can be seen in the
following example. As with addition, remem-
ber to align the whole numbers or decimal
numbers in relation to the ones, tens, and hun-
dreds columns. To subtract the number 346
from the number 663, align the figures with the
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larger number above (minuend), and the lesser
number below (subtrahend).

EXAMPLE:
hundreds tens ones
6 6 3
-3 4 6
3 1 7

The solution, or remainder, is three-hundred
seventeen, or 317, and is arrived at by first sub-
tracting the 6 in the ones column from the 3 in
the ones column. This is not possible without
borrowing from the tens column one unit of ten
and adding this ten to the original three ones
for a total of 13. Then 6 can be subtracted from
13 with a remainder of 7. After borrowing from
the tens column, the remainder left is now five
tens in the tens column from which 4 will be
subtracted for a remainder of one ten in the
tens column. The hundreds column is now sub-
tracted in the same manner of 6 minus 3 equals
3 remainder.

To check subtraction, add the remainder and
the subtrahend together. The sum of the two
should equal the minuend.

Multiplication. Multiplication is the process of
finding a quantity by repeatedly adding a given
number a specified number of times. Thus, the
sum of 6 + 6 + 6 + 6 = 24 can be expressed by
multiplication as 6 x 4 = 24. The numbers 6 and
4 are known as the factors of the multiplication
and 24 as the product. Multiplication can be indi-
cated by multiplication signs (x or sometimes *)
or can be indicated in equations and formulas
by the lack of any other operation signs.

The product, which is the solution in multipli-
cation problems, is formed by multiplying the
factors regardless of the numbers of digits in
each factor. These factors are the multiplicand,
which is the number to be multiplied, and the
multiplier is the number by which the multipli-
cand is to be multiplied.

When the multiplier is a single digit, the multi-
plication operation can best be shown as in the
following example. Multiply the number 34 by
the number 4.

EXAMPLE:
34
x 4
136

The product in this example is arrived at by the
following process. The multiplier is 4, and 34
is the multiplicand. First, 4 times 4 equals 16,
which is one unit of ten and six ones. Enter the
6 in the ones column and carry, or transfer, the
one unit of ten to the tens column. Multiply the
4 times the 3 to find the product of 12, and then

add the one ten from the ones column, or 13.
Enter this number as 3 in the tens column and
(since there is nothing else in the hundreds col-
umn) place the one in the hundreds column. The
result is 1 hundred, 3 tens, and 6 ones, or 136.

When both factors are multiple digit integers,
the product is formed by multiplying each
digit in the multiplicand by each digit in the
multiplier. Each digit in the multiplier becomes
an individual multiplier in and of itself. Once
each multiplicand has been used as a multi-
plier, the products of each multiplication oper-
ation are added together to arrive at a total
product. Before adding the products, however,
they must be aligned properly. Alignment of
the partial products is critical to the addition
of these partial products to arrive at the total
product.

EXAMPLE:
376
x 42
752
15040

15,792

Notice that each digit of the multiplier (in this
case the 4 and the 2 in 42) is in direct alignment
with the last digit of their respective products.
The 2 in 752 is directly under the 2 in 42, and
4 in 1504 is directly under the 4 in 42. This
alignment must be maintained to arrive at the
correct total product when adding the partial
products.

When multiplying a series of numbers, the
final product will be the same, regardless of the
order in which the numbers are arranged.

EXAMPLE:
Multiply: (7) (3) (5) (2) = 210
7 21 105 7 335
x3 x5 x2 or x5 x2 x6
1 105 210 35 6 210

Division. The reverse of multiplication, divi-
sion is the process of finding how many times
one number is contained in another number.
The first number is called the divisor, the second
the dividend, and the result is the quotient.

The correct method of dividing one number
by another involves the operation of addition,
subtraction, and multiplication to arrive at the
correct quotient.

Division is indicated by the use of the division
sign (+) with the dividend to the left and the
divisor to the right of the sign, or draw divi-
sion bracket, with the dividend inside the sign
and the divisor to the left (known as long divi-
sion), or by placing the dividend over a line,



and the divisor under the line in a fractional
form. (Fractions are described later in this
chapter.)

Division operations can best be described by
example. As an example, divide the number
624 by the number 16.

39

161624
48

144

144

0

The first step in the division process is to break
the dividend into smaller numbers for the divisor
to be divided into.

In the example, 16 is more than the 6 in 624,
so the next possible breakdown is with the 62
in 624. Here we find that 16 will go into the
62 a total of 3 times. Thus, 3 is the first num-
ber of our answer, and is placed above the 2
in the dividend when using the division sign.
We must then multiply the 3 by the divisor
(16) and find a product of 48. The 48 is placed
under and subtracted from the 62 in the divi-
dend, the difference of which is 14. The 4 in
the original dividend of 624 is then brought
down to the right of the 14, creating a new
dividend of 144.

The new dividend (144) is now divided by the
divisor (16), and we find that 16 will go into 144
exactly 9 times. Therefore, 9 is the second num-
ber of the quotient, and is placed above the 4
in the original dividend (624) when using the
division sign. We then multiply 16 by 9, finding
a product of 144, which is placed under the new
dividend of 144 and subtracted. In this case, the
remainder is 0. So the first number in the quo-
tient is 3, and the second number is 9 giving us
a quotient of 39.

While division is a series of simple steps in
order to arrive at the correct quotient, the quo-
tient for the example given is a whole number.
This will not always be the case, as will be dis-
cussed in the next and later sections.

Section 3

Decimal Fractions

If a given quantity is greater than one whole
number but less than the next whole number,
that quantity is a fraction. When the difference
between 2 whole numbers is divided into 10
equal parts, or equal parts in multiples of 10
(such as hundreds, thousands, etc.) that differ-
ence can be expressed in decimal fractions.

General Mathematics

When using decimal fractions, a mark called
a decimal point () is used as a reference. The
whole number is placed to the left of the deci-
mal point, and the decimal fraction is indicated
by placing one or more digits to the right of
a reference. The following is an example of
decimal fractions:

0.6 is read six tenths.

0.06 is read six hundredths.

0.006 is read six thousandths.

5.06 is read five and six hundredths.

When writing a decimal, any number of zeros
may be written to the right of the decimal num-
ber without changing the value of the decimal.
This may be illustrated in the following man-
ner:

050=29 -1 .0500=200 _ 1
100 2 1,000 2

05=2 =
10

1.
X
A pure decimal is a decimal fraction, such as
0.6, 0.06, etc., where no whole number is used.
When a whole number and a decimal fraction
are written together, such as 3.6, 12.2, 131.12,
etc., the number is known as a mixed decimal.

Addition of decimal fractions. To add decimal
expressions, arrange the decimals so that the dec-
imal points align vertically, and add as with inte-
gers. Place the decimal point in the sum directly
below the aligned decimal points above.

The following example demonstrates addition
of decimal fractions. The total resistance of

2.34 Ohms
A%

p— 37.5 Ohms (I\/D

D
\_/

0.09 Ohms

Figure 1-3-1. A series circuit.

the series circuit (Figure 1-3-1) is equal to the
sum of the individual resistances. What is the
total resistance for the diagram shown in this
example?

1. Arrange the decimals in a vertical column
so that the decimal points are in alignment.

2.34
375
0.09
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2. Complete the addition following the tech-
nique used in adding whole numbers. Place
the decimal point in the result directly
below the other decimal points.

2.34

375

0.09

3993 ohms

Subtraction of decimals. To subtract decimal
expressions, arrange the decimals so that the
decimal points align vertically, and subtract
in the same manner as with integers. Place the
decimal point in the difference directly below
the aligned decimal points above.

The following example demonstrates subtrac-
tion of decimal fractions. A series circuit contain-
ing two resistors has a total resistance of 37.27
ohms. One of the resistors has a value of 14.88
ohms. What is the value of the remaining resistor?

1. Arrange the decimals in a vertical column
so that the decimal points are in alignment.

37.27
—14.88

2. Perform the subtraction process using the
procedure for subtracting whole numbers.
Place the decimal point in the result directly
below the other decimal points.

37.27
—14.88
22.39 ohms

Multiplication of decimals. When multiply-
ing decimals, ignore the decimal points and
multiply the terms as though they were whole
numbers. To locate the decimal point in the
product, count the number of digits (decimal
places) to the right of the decimal points in both
the multiplier and multiplicand. The decimal
point in the product should be placed so that the
same number of digits in the product are to the
right of the decimal as the total of those in the
multiplier and multiplicand.

The following example demonstrates multipli-
cation with decimals. Using the formula, Watts
= Amperes x Voltage, determine the wattage of
an electric heater that uses 9.45 amperes from a
120-volt source.

1. Arrange the terms and multiply. Ignore the
decimal point.

}— Two decimal places
9'45

X120
000
1890
945
113400

2. Locate the decimal point. Count the number
of decimal places to the right of the decimal
in both the multiplier and multiplicand.
Begin at the right of the product and place
the decimal point to the left the number of
places that will equal the total of the decimal
places in both the multiplier and the multi-
plicand.

9.45
x 120 Count from right to
18900 left numbers of
945 decimal places.

1134.00

In some cases, the number of digits in the
product may be less than the sum of the
decimal places in the multiplier and multiplicand.
When this occurs, merely add zeros to the left
of the product until the number of digits after
the decimal equals the sum of the decimal
places in the multiplier and multiplicand.

As an example of a situation requiring the
addition of zeros to the product, multiply the
number 0.218 by 0.203.

1. Arrange the terms and multiply, ignoring
the decimal point.

0.218 o
X o~203:>— Six decimal places

654
4360
44254

2. Locate the decimal point. Add a zero to
the left of the product so that the number
of places will equal the sum of the decimal
places in the quantities multiplied.

0.218
X 0.203
654 Move from right
4360  to left six

0.044254 decimal places.
NAAAAN

654321

The multiplication of one decimal fraction by
another will always produce an answer smaller
than either of the two numbers. When a decimal
fraction is multiplied by a whole number or by
a mixed decimal, the answer will lie between
the two numbers.

Division of decimals. When performing
division of decimals, the following three

principles apply:

* When the divisor involves a decimal
fraction, the quotient is found by convert-
ing the divisor into a whole number by
moving the decimal point in the divisor
to the right. If the decimal in the divisor is
moved, the decimal in the dividend must
also be moved in the same direction and
the same number of spaces.



e If the divisor is a whole number, the
decimal place in the quotient will align
vertically with the decimal in the
dividend when the problem is expressed
in long division form.

* When the dividend and divisor are
multiplied by the same number, the
quotient remains unchanged.

To divide decimal expressions, count off to the
right of the decimal point in the dividend the
same number of places that are located to the
right of the decimal point in the divisor. Insert
a caret (") to the right of the last digit counted.
If the number of decimal places in the dividend
is less than the number of decimal places in the
divisor, add zeros to the dividend, remember-
ing that there must be at least as many decimal
places in the dividend as in the divisor. Divide
the terms, disregarding the decimal points
entirely. Place the decimal point in the quotient
so that it aligns vertically with the caret mark
in the dividend.

The following example demonstrates the
division of decimal fractions. The wing area
of a certain airplane is 245 square feet; its span
is 40.33 feet. Divide the area of the wing by its
span to find the chord of the wing,.

1. Arrange the terms as in long division and
move the decimal point to the right, adding
zeros as necessary, and insert a caret.

Insert caret

Two decimal /
places in divisor —40.33245.00, two places
S from
original

2. Divide the terms, disregarding the decimal
points entirely. Add additional zeros to the
right of the dividend to permit carrying the
quotient to the desired accuracy.

40.331245.0000
241 98

3020

0000

30200

28231

1969

Zeros are added
for accuracy

3. Place the decimal point in the quotient so
that it aligns vertically with the caret mark
in the dividend.

6.07 feet
40.33,[24500,00
24198
3020
0000
30200
28231
1969
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Section 4

Scientific Notation, or the
Powers of Ten

The difficulty of performing mathematical prob-
lems with very large (or very small) numbers, and
the counting and writing of many decimal places
are both an annoyance and a source of error. The
problems of representation and calculation are
simplified by the use of scientific notation, com-
monly referred to as the powers of ten (Table 1-4-1.)

Scientific notation requires the use and
understanding of the principles of a device
known as the exponent. The exponent is a
number or symbol that is normally written to
the right and above the number to which the
exponent applies.

The positive exponent (or power) of a number
is a shorthand method of indicating how many
times the number is multiplied by itself. For
example, 2’ (read as 2-cubed or 2 to the third
power) means 2 is to be multiplied by itself 3
times: 2 x 2 x 2 = 8. A number with a negative
exponent may be defined as its inverse or recip-
rocal (1 divided by the number) with the same
exponent made positive. For example, 2” (read
as 2 to the minus 3 power) is the same as:

1 1 1

| 17

Power of 10 Expansion

Value

106 T0x10x10x10x10x 10

1,000,000

10° 10x10x10x10x 10

100,000

104 10x10x10x 10

10,000

103 10x10x 10

1,000

102 10x 10

100

10! 10

10

100

1

simplifies to 3 x 100 centimeters per second.

The velocity of light, 30,000,000,000 centimeters per second,

1

-1
107" = ]

1
2 10x 10

1
10x10x10

1
10x10x10x10

1
10x10x10x10x 10

1 1

102 =

1073 =

w

104 =

= e e -
N

10° =

—_
o
[

e =0.1

—_

1
0

1
100
1
1,000

=0.01

=0.001

10,000 =0.0001

1
100,000

1

=0.00001

106 =156
10 10x10x10x10x10x 10

1,000,000 =0.000001

becomes 9.11 x 10-28 gram.

The mass of an electron, 0.000,000,000,000,000,000,000,000,000,911gram

Table 1-4-1. Powers of ten and their equivalents.
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Any number, except zero, to the zero power is
equal to 1. When a number is written without
an exponent, the value of the exponent is 1.
When an exponent has no sign (+ or -) preceding
it, the exponent is positive.

The value of a number does not change when it
is both multiplied and divided by the same fac-
tor (5 x 10 + 10 = 5). Moving the decimal point of
a number to the left is the same as dividing the
number by 10 for each place the decimal point
moves. Conversely, moving the decimal point to
the right is the same as multiplying the number
by 10 for each place the decimal point moves.

Multiplication by scientific notation.
Multiplication employing powers of ten may be
performed in three simple steps. In the follow-
ing example, the number 754 will be multiplied
by 220. While this is normally a simple multipli-
cation problem, it can be used to demonstrate
the simplicity of using the powers of ten.

Reduce all numbers to values between 1 and 10
multiplied by 10 to the proper power.

e In the sample problem 754 can be reduced
to 75.4 x 10, and further reduced to 7.54
x 100. This reduction brings our number
down to between 1 and 10 as was previously
suggested. Since the powers of ten require
the use of multiples of ten, the 100 in our
problem must be further reduced to 10*
(since 10 x 10 = 100). So the first number of
the problem is reduced to 7.54 x 10".

e The second number in the problem is
reduced in the same manner as the first.
The number 220 is reduced to 22.0 x 10,
and further reduced to 2.20 x 10°.

e The problem is now changed from 754 x
220 to (7.54 x 10%) x (2.20 x 10°).

Perform the indicated operations. Using the
sample problem, the number 7.54 is multiplied
by 2.20 with a result of 16.588.

Add the exponents of the tens. Again using the
sample problem, 10° x 10* = 10",

After the multiplication and additions operations,
the result of our sample problem is 16.588 x
10". This can be converted into a whole num-
ber by multiplying the 16.588 by the 10*, simply
by moving the decimal to the right four num-
bers. Since there are only three to the right of
the decimal, a zero must be added, giving us a
total of 165,880.

Division by scientific notation. Division
operations using scientific notation are per-
formed in the same manner as multiplication
operations with the following exceptions.

Divide instead of multiplying the reduced
numbers.

When converting back to a whole number,
there is no need to move the decimal if divisor
and dividend have the same exponent. This is
because, as was stated in the section on division
of decimals, when the dividend and divisor are
multiplied by the same number, the quotient
remains unchanged.

Section 5

Common Fractions

A common fraction is an indicated division
that expresses one or more of the equal parts
into which a unit is divided. For example, the
fraction 2/3 indicates that the whole has been
divided into 3 equal parts and that 2 of these
parts are being used or considered.

Components of the common fraction.

e The number above the line is referred to
as the numerator.

¢ The number below the line is the
denominator.

Types of fractions

e A proper fraction exists when the numerator
of the fraction is smaller than the denomina-
tor. A proper fraction always represents a
quantity of less than 1.

An improper fraction results when the
numerator of a fraction is equal to or
larger than the denominator. When the
numerator and denominator are the same
number, the fraction is equal to one (1).
Otherwise, improper fractions are greater
than 1.

A mixed number is the result of the
division of an improper fraction. Mixed
numbers are discussed in detail in section
7 of this chapter.

15_.7

8- '8

Complex fractions contain one or more
fractions or mixed numbers in either the
numerator or denominator. The following
fractions are examples of complex frac-
tions:

2. 38, 34 31/2

23 2 Sj8 23



The same fundamental operations performed
with whole numbers can also be performed
with fractions. These are addition, subtraction,
multiplication, and division.

Finding the least common denominator. To
be able to add or subtract common fractions,
a common denominator among the fractions
must be found. This is a denominator into
which each of the denominators of the fractions
can be divided a whole number of times.

When the denominators of fractions to be added
or subtracted are such that a common denomi-
nator cannot be determined readily, the least
common denominator (LCD) can be found by
the continued division method.

To find the LCD of a group of fractions, write the
denominators in a horizontal row. Next, divide
the denominators in this row by the smallest
integer other than one that will exactly divide
two or more of the denominators. Bring down
to a new row all the quotients and numbers
that were not divisible. Continue this process
until there are no two numbers in the resulting
row that are divisible by any integer other than
one. Multiply together all the divisors and the
remaining terms in the last row to obtain the
least common denominator.

As an example, find the LCD for 7/8, 11/20,
8/36, 21/45.

1. Write the denominators in a horizontal row
and divide this row by the smallest integer
that will exactly divide two or more of the
numbers.

218 20 36 45

4 10 18 45

2. Continue this process until there are no two
numbers in the resulting row that are divisible
by any integer other than one.

8 20 36 45
4 10 18 45

5 945
315
15
1 1

bLw wiN N
NN NN

=l

3. Multiply together all the divisors and terms
greater than 1 remaining in the last row to
obtain the LCD.

LCD=2x2x3x3x5x2=360

4. Once the LCD is found, the numerator of
each fraction is multiplied by the quotient
of the common denominator divided by the
original denominator. This new numerator,
when placed over the common denominator,
is equal to the original fraction.
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As an example, the fractions 1/2 and 2/3 will be
reduced to their LCD.

1. The LCD between the numbers 2 and 3 must
be found. The result is the number 6.

2. Next the new numerators are found by first
dividing the common denominator (6) by
each of the original denominators (2 and 3).

6+2=3and6+3=2

3. After dividing the LCD by the original
denominator, you must multiply each origi-
nal numerator by the quotient.

1Tx3=3and2x2=4

4. Then the new numerators are placed over
the common denominator, resulting in two
new fractions, equal to the two original
fractions. Since these equivalent fractions
have a common denominator, they may be
added or subtracted.

Addition of common fractions. In order to
add fractions, all the denominators must be
alike. Therefore all fractions to be added must
be reduced to their LCD.

When adding fractions, once they have been
reduced to their LCD, it is only necessary to add
the numerators and express the result as the
numerator of a fraction whose denominator is
the common denominator. The sum of the added
fractions can then be reduced to its lowest terms
in a process described in detail in section 8 of this
chapter.

The following problem is an example requiring
the addition of common fractions. A certain
switch installation requires 5/8-inch plunger
travel before switch actuation occurs. If 1/8-
inch travel is required after actuation, what
will be the total plunger travel?

1. Add the numerators.
5+1=6
2. Express the result as the numerator of a

fraction whose denominator is the common
denominator.

+

ol

_6_3,
=52 inch travel

®|=

Subtraction of common fractions. In order to
subtract fractions, all the denominators must be
alike. Therefore all fractions to be added must
be reduced to their LCD.
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When subtracting fractions, once they have been
reduced to their LCD, it is only necessary to sub-
tract the numerators and express the result as
the numerator of a fraction whose denominator
is the common denominator. The difference of
the added fractions can then be reduced to its
lowest terms (described in section 8).

As an example of a common fraction subtraction
problem, the total travel of a jackscrew is 13/16
of an inch. If the travel in one direction from
the neutral position is 7/16 of an inch, what is
the travel in the opposite direction?

1. Subtract the numerators.
13-7=6

2. Express the result as the numerator of a
fraction whose denominator is the common

denominator.

3

E-l:é f H h é:

T6 16-160f aninch, orjg
8

0w

Section 6
Mixed Numbers

Addition of mixed numbers. Mixed numbers
can be added by changing them to improper
fractions and adding the improper fractions as
was previously described.

As an example of the addition of mixed num-
bers, consider the addition of a 2 2/3-inch exten-
sion added to a piece of 5 3/4-inch long bar stock.
Find the new total length of the bar stock.

(Convert the mixed numbers to improper fractions.)

22/3=3/3+3/3+2[3=8[3
53/4=4/4+4/4+4)4+4)4+4]a+3]4=23/4

Find the LCD between the improper fractions,
and convert the fractions.

LCD=3x4=12
Since 3 goes into 12 a total of 4 times

8 x 4 = 32 therefore 8/3 = 32/12

Since 4 goes into 12 a total of 3 times

23 x 3 = 69 therefore 23/4 = 69/12

Add the numerators, placing the sum over the
common denominator.

32 + 69 = 101 which then becomes 101/12

Divide the numerator by the denominator to
find a whole number, and place any remainder
of the division over the denominator.

101 + 12 = 8 with a remainder of 5 = 8 5/12

If there is a remainder in the previous operation,
when it is placed over the denominator the
resulting fraction is then reduced to its lowest
terms. Reduction to the lowest terms will be
discussed later in this chapter.

Thus, the result of our calculations shows that
the addition of a 2 2/3-inch extension to a 5 3/4-
inch piece of bar stock results in a new length
of 8 5/12-inches.

Subtraction of mixed numbers. Mixed
numbers can be subtracted, as with addition,
by changing them to improper fractions and
performing the subtraction operations on the
improper fractions.

As an example of the subtraction of mixed num-
bers, consider the cutting of a 1 1/2-inch section
from a piece of 8 7/8-inch long bar stock. Find
the new total length of the bar stock.

1. Convert the mixed numbers to improper
fractions.

11/2=2/2+1/2=3/2

87/8="8/a+8/s+8/g+8/a+8/g+8/g+8/a+8/g+
7/8 - 71/8

2. Find the LCD between the improper frac-
tions, and convert the fractions.

LCD=2x8=16
Since 2 goes into 16 a total of 8 times,

3 x 8 = 24 therefore 3/2=24/16

Since 8 goes into 16 a total of 2 times,

71 x 2 = 142 therefore 7 1/8 = 142/16

3. Subtract the numerators, placing the difference
over the common denominator.

142 - 24 = 118 which then becomes 118/16

4. Divide the numerator by the denominator to
find a whole number, and place any remainder
of the division over the denominator.

118 = 16 = 7 with a remainder of 6 =7 6/16

When there is a remainder, as in this example, it
is placed over the denominator and the resulting
fraction is then reduced to its lowest terms. In this
example, 7 6/16 is reduced to 7 3/8. Reduction to
the lowest terms is discussed in the next section.



Section 7

Reduction of a Common
Fraction to Its Lowest Terms

To make the numbers in a fraction as small as
possible, the fraction is reduced to its lowest
terms. While not reducing the fraction is still
considered correct, it is generally considered
proper and, in most cases, necessary to reduce
all fractions to their lowest terms.

If the denominator is evenly divisible by the
numerator, then reducing the fraction is made
simple. The denominator is divided by the
numerator with the result becoming the new
denominator. When the numerator is divided by
itself, the result will always be one.

8/32 is reduced to 32 + 8 = 4 with no remainder,
therefore 32 +8=4and 8 +8=1,
therefore 8/32 is reduced to 1/4

If the denominator is not divisible by the numera-
tor, a number is searched for by which both the
denominator and numerator are both evenly
divisible. If a number is found, both the denomi-
nator and numerator are divided by that number
and a new fraction is formed. A number is then
searched for that will evenly go into both the
denominator and numerator of the new fraction.

25/95 is reduced to 95 + 25 = Not evenly divisible
Not evenly divisible by 2, 3, or 4,

95+5=19and 25+5=35,

therefore 25/95 is reduced to 5/19

5/19 is not evenly divisible by any number.

Useful rules:
* Both numbers even, divisible by 2.
e Both numbers end in 0 or 5, divisible by 5.

 Both numbers end in 0, cancel zeros top and
bottom.

When no number can be divided evenly (with-
out any remainder) into both denominator and
numerator of a fraction, the fraction is said to be
reduced to its lowest terms.

Section 8

Multiplication of Fractions

The product of two or more fractions is obtained
by multiplying the numerators to form the
numerator of the product, and by multiply-
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ing the denominators to form the denominator
of the product. The resulting fraction is then
reduced to its lowest terms.

A common denominator need not be found in
the multiplication of fractions because the new
denominator will, in most cases, be different
from that of all the original fractions.

The following example illustrates the multipli-
cation of fractions: What is the product of 3/5 x
12/22 x 1/2?

Multiply the numerators together.
3x12x1=36

Multiply the denominators together.
5x22x2=220

The multiplication operations result in a new
fraction.

3/sx12/22x 1/2=36/220

Reduce the resulting fraction to its lowest
terms. The LCD is found to be 4. Therefore:

36/220=9/55

Section 9

Simplification of Fractions
by Cancellation

General procedures for cancellation.
Cancellation is a technique of dividing out,
or canceling, all common factors that exist
between numerators and denominators. This
aids in locating the ultimate product by elimi-
nating much of the burdensome multiplication.

To help illustrate cancellation, the following sam-
ple problem is provided. What is the product of:

18/10x5/3="7?

The product can be found by multiplying 18
x 5 and 10 x 3, then dividing the product of the
numerators by the product of the denominators. A
much easier method of solution is by cancellation.

The 10 in the denominator of 18/10 and the 5 in
the numerator of the fraction 5/3 can both be
divided an exact number of times by 5.

1
18 5~
1w 3
2
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The 18 in the numerator of 18/10 and denominator
3 in the fraction 5/3 are exactly divisible by 3.

N SE o
x
db{|I‘IQQ_|

The 6 in the numerator and the 2 in the denom-
inator of the resultant fraction are both divis-
ible by 2.

The fraction is thus reduced to its lowest terms,
and the final multiplication and division steps
are performed with ease, when compared with
the task of multiplying and dividing the larger
fractions.

Section 10

Division of Common
Fractions

To divide common fractions, the mathmatical
function of multiplication, not division, is used.

To divide one fraction by another, simply invert
the denominator then multiply the numerators
together and the denominators together. This is
known as the inverted divisor method.

Keep in mind the order in which the fractions
are written. It is important in the division of
fractions that the proper fraction be inverted.
Remember that it is always the divisor that is
inverted, never the dividend.

To illustrate the division of fractions, the fol-
lowing example is provided. Divide 1/3 by 1/2.

Section 11

Converting Common
Fractions into Decimals

A decimal fraction is obtained by dividing the
numerator of a common fraction by the denomi-
nator and showing the quotient as a decimal. If

necessary, zeros are added to the right to permit
carrying the quotient to the desired accuracy. As
an example, 5/8 is converted into a decimal by
dividing the 5 by the 8 which is equal to 0.625.

Section 12

Converting Decimal
Fractions into Common
Fractions

To change a decimal fraction to a common
fraction, count the number of digits to the
right of the decimal point. Express the num-
ber as the numerator of a fraction whose
denominator is 1 followed by the number of
zeros that will equal the number of digits to
the right of the decimal point.

As an example, the number 0.375 is converted
into a common fraction by first counting the
numbers to the right of the decimal, which is 3.
The number 375 is then placed over the number
1 with 3 zeros behind it.

375
0.375= 7000

Reduction of the new fraction is then accom-
plished if it is desired or necessary.

375 _15_3
1000 40 8
Section 13

Rounding Off Decimal
Numbers

The whole realm of measurement involves
numbers that are only approximations of pre-
cise numbers. The degree of accuracy of these
measurements depends on the refinement of
the measuring instruments. To prevent hav-
ing to use unrealistically large or small, but
extremely accurate, numbers where precision
to that degree is not necessary, decimal num-
bers are rounded off.

A decimal expression is rounded off by retaining
the digits for a certain number of places and
discarding the rest.

The retained number is an approximation of
the computed or exact number. The degree of



accuracy desired determines the number of
digits to be retained.

When the digit immediately to the right of the
last retained digit is 5 or greater, increase the
last retained digitby 1. When the digitimmediately
to the right of the last retained digit is less than
5, leave the last retained digit unchanged.

As an example of a situation where it is neces-
sary to round a number to some value that is
practical to use, a measurement is computed to
be 29.4948 inches. It is impractical, if not impos-
sible, to measure this accurately with a steel
rule which is accurate only to 1/64 of an inch.
We can use the process of rounding to find a
practical measurement.

For this example, it is assumed that the measuring
equipment, which we will use, is accurate to
the nearest tenth. Based on this assumption,
round 29.4948 to the nearest tenth.

1. Determine the number of digits to retain. In
this case, one-tenths being the first place to
the right of the decimal point.

29.4948

2. Change the value of the last retained digit, if
required. In this case, since 9 is greater than
5, the final decimal is expressed thus:

29.4948 becomes 29.5 inches

Section 14

Signed Numbers

Signed numbers are numbers that have direc-
tional value from a given starting point, which
is usually zero. Numbers above or to one side
(usually right) of zero are called positive, and are
designated by the use of the plus or positive sign
(+). Those numbers below or to the opposite side
(usually left) of zero are designated as negative,
and are designated by the use of the minus or
negative sign (). Figure 1-14-1 is representative
of signed numbers on a horizontal scale.

0+1 +2 +3 +4 +5

5 -4 -3 -2 -1
IIIIIIIIIII

I‘ ;I
I I

Figure 1-14-1. A scale of signed numbers.

Addition of signed numbers. When adding
two or more positive numbers, whether whole
or fractional numbers, normal addition pro-
cedures are used. The result will be a positive
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number. Using Figure 1-14-1, addition of posi-
tive numbers is always done to the right on the
scale.

When adding two or more negative numbers,
whether whole or fractional, normal addition
procedures are used. The result will always
be a negative number. Using Figure 1-14-1,
addition of negative numbers is always done to
the left on the scale.

To add a positive and a negative number, find
the difference in their actual values and give
this difference the sign (+ or -) of the larger
number. The secret to adding a negative num-
ber to a positive one is that adding a negative
is the same as subtracting a positive number. If
the negative number is smaller then the posi-
tive number, just simply subtract.

Subtraction of signed numbers. When
subtracting two or more positive numbers,
whether whole or fractional numbers, normal
subtraction procedures are used. If the subtrahend
is smaller then the minuend, the remainder
will be a positive number. If the subtrahend is
larger then the minuend, the remainder will be
a negative number. Using Figure 1-14-1, sub-
traction of positive numbers is always done to
the right on the scale.

When subtracting two or more negative num-
bers, whether whole or fractional, normal sub-
traction procedures are used. If the subtrahend
is smaller then the minuend, the remainder
will be a negative number. If the subtrahend is
larger then the minuend, the remainder will be
a positive number. Using Figure 1-14-1, subtrac-
tion of negative numbers is always done to the
left on the scale.

To subtract positive and negative numbers,
change the sign of the subtrahend (the number
to be subtracted) and proceed as in addition.

Subtracting positive and negative numbers can
be illustrated by finding the temperature
difference between a temperature reading of
+20 at 5,000 feet and a reading of —6 at 25,000
feet. Follow the rule, a change in temperature is
equal to the first reading, subtracted from a second
reading.

Change the sign of the number to be sub-
tracted.

+20 becomes -20

Combine the two terms, following the proce-
dures for adding like signs.

(-6) + (-20) = -26 degrees



1-14 | General Mathematics

Multiplication of signed numbers. Multipli-
cation of signed numbers follows the same pro-
cedures as multiplication of any other number
or fraction. After the multiplication process is
completed, the product must be assigned a sign.

To find the product of any two signed numbers,
there are three simple rules to remember.

e The product of two positive numbers is
always positive (+).

e The product of two negative numbers is
always positive (+).

e The product of a positive and a negative
number is always a negative () number.

The following examples illustrate multiplication
of signed numbers:

3x6=18 -3x6=-18
3x-6=18 3x-6=-18

Division of signed numbers. Division of
signed numbers follows the same procedures
as division an any other number or fraction.
After the division process is completed the
quotient must be assigned a sign.

To find the quotient of any two signed numbers,
there are three simple rules to remember.

e The quotient of two positive numbers is
always positive (+).

e The quotient of two negative numbers is
always positive (+).

* The quotient of a positive and a negative
number is always a negative (-) number.

The following examples illustrate division of
signed numbers:

6+3=2 -6+3=-2
-6+-3=2 6+-3=-2
Section 15
Percentage

Percentage is simply the division of a whole into
100 even parts, and expressing the number of
those parts that apply in a given situation. When
using percentage, rather than refer to one-half or
fifty hundredths, the term 50 percent is used.

Finding a number that is a given percent-
age of another. The technique used in determin-
ing a percent of a given number is based on

the fundamental process of multiplication. It
is necessary to state the desired percent as a
decimal or common fraction and multiply the
given number by the percent expressed.

The following example is used to illustrate
finding the percentage of a given number:

In an example to illustrate finding a number
from a percentage of another number, the
cruising speed of an airplane at an altitude
of 7,500 feet is 290 knots. What is the cruising
speed at 9,000 feet if it has increased 6 percent?

1. State the desired percent as a decimal.
6% =0.06

2. Multiply the given number by the decimal
expression.

290 x 0.06 = 17.40

3. Add the new product to the given number.
This is the new cruising speed.

290 + 17.4 = 307.4 knots

Finding what percentage one number is of
another. Determining what percent one number
is of another is done by writing the partial num-
ber as the numerator of a fraction and the whole
number as the denominator of that fraction, and
then expressing this fraction as a percentage.

As an example, a motor rated as 12 horsepower
is found to be delivering 10.75 horsepower.

What is the motor efficiency expressed in percent?

1. Write the partial number (10.75) as the
numerator of a fraction whose denominator
is the whole number (12).

10.75

12

2. Convert the fraction to its decimal equivalent.
10.75 + 12 =0.8958

3. Express the decimal as a percent.
0.8958 = 89.58% efficient

Finding the total number when part of the
number and its percentage are known. To
determine anumber when a percent of itis known,
express the percent as a decimal and divide the
known number by the decimal expression.

As a sample problem, 80 ohms represent 52
percent of a circuit’s total resistance. Find the
total resistance of this circuit.



1. Express the percent as a decimal.
52% = .52

2. Divide the known number by the decimal
expression.

80 + .52 = 153.8 ohms total resistance

Section 16

Ratio

An important application of the common frac-
tion is that of ratio. A ratio represents the com-
parison of one number to another number.

Comparison by the use of ratios has wide-
spread application in the field of aviation.
A ratio is used to express the comparison
of the volume of a cylinder when the piston
is at bottom center, to the volume of a cyl-
inder when the piston is at top center. This
is referred to as the compression ratio. The
aspect ratio of an aircraft wing is a com-
parison of the wing span to the wing chord.
The relationship of maximum speed, wing
area, wing span, loaded weight, and horse-
power of different makes and models of
aircraft may be compared through the use
of ratios.

A ratio is the quotient of one number divided
by another number, expressed in like terms. It
is, therefore, the fractional part that one num-
ber is of another.

e Ratios may be expressed as fractions, or
may be written using the colon () as the
symbol for expressing ratio. Thus the ratio
7/8 can be written 7:8.

¢ Ratios may also be expressed as decimal
equivalents, such as 7:8 = 0.875

This decimal equivalent is especially use-

ful when expressing air/fuel ratios as used in
modern engines.

Section 17

Proportion

A proportion is a statement of equality between
two or more ratios.

The first and last terms of the proportion are
called the extremes. The second and third terms
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are called the means. Thus the following exam-
pleisread 3isto4 as6isto 8.

6. 00346
-8,or3.4-6.8

Alw

In any proportion, the product of the extremes
is equal to the product of the means. In the pro-
portion

2:3=4:6
the product of the extremes, 2 x 6, is 12; the prod-
uct of the means, 3 x 4, also is 12. An inspection
of any proportion will show this to be true.
This rule simplifies the solution of many prac-
tical problems.
As an example, an airplane flying a distance
of 300 miles used 24 gallons of gasoline. How
many gallons will it need to travel 750 miles?
1. Find related quantities (like labels).
2. Set them as a fraction.

3. Write an equals sign.

4. Place the third known value on the same
line as its like label.

300 miles _ 24 gal
750 miles ~ x gal

300:750 = 24:x
300x =750 x 24
300x = 18,000

x = 60 gal of gasoline

This example should be written as:

300:750 = 24:x
(300) (x) = (750)(24)
300x = 18,000
x=60

Sixty gallons of gasoline will be required to
travel a distance of 750 miles.

Section 18
Powers and Roots

Raising a number to a given power. When
one number, the base, is used as a factor two or
more times, the result is a power of that base.

A positive integral exponent, written as a small
number just to the right and slightly above the
base number, indicates the number of times the
base is used as a factor. Thus, 4 squared or 4
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means 4 x 4, which is 16. The 4 is the base, the 2
is the exponent, and the 16 is the power.

Extracting the root of a number. A root of a
number is one of two or more equal numbers
that, when multiplied together, will produce
the number. Such a number is called an equal
factor.

Thus, two equal factors that will produce 9 when
multiplied together are 3 and 3. Therefore, the
square root of 9 equals 3. This may be written
V9 = 3. The symbol V is called a radical sign.

Another method of indicating the square root
of a number is to use a fractional exponent such
as 9'” = 3. If the root to be taken is other than a
square root, it may be shown in a similar man-
ner; that is, the cube root of 9 may be written
9'°. For example, the cube root of 8 equals 2 and
may be written *v 8 = 2, or 8 = 2; the fourth
root of 256 equals 4 and may be written 'v256 =
4, 0r 256" = 4.

Computation of square root. It is compara-
tively easy to determine the square root of
such numbers as 4, 9, 16, and 144. The num-
bers are the perfect squares of small numbers.
Unfortunately, all numbers are not perfect
squares; neither are they small.

The square of a number is the product of that
number multiplied by itself. The square root of
a number is the reverse process of squaring a
number, and is essentially a special division
process. A description of this process is pre-
sented in the following example:

Find the square root of 213.16.
N213.16

Starting at the decimal point, and marking off
in both directions from the decimal point, sep-
arate the number into periods of two figures
each. The last period at the left end need not
have two figures; all others must have two fig-
ures. A zero may be added to the right end so
that the period will have two figures.

V21316

Next select the largest number that can be
squared in the first period. Place the selected
number above the radical sign, and place the
square of this number under the first period
and subtract.

—=|= N]—=
—_
w
—,
o)}

Then bring down the next pair.

|_| N|—
-
1%
i
)

—_

1

w

Multiply the root by 2 and place the product to
the left of the remainder as the trial divisor.

N —

N213.1

w

2

_||_\

7

w

Determine the number of times the trial divi-
sor will go into that portion of the remainder
that is one digit more than the trial divisor.
Write this number to the right of the digit in
the trial divisor to form the final divisor and
also to the right of the digit in the root.

Multiply this number times the completed
divisor. If the resulting product is larger than
the remainder, reduce the number by one, both
in the root and in the final divisor, and repeat
the multiplication process.

14. 6
\213.16
1
24 113
96

Subtract the product formed from the remain-
der and bring down the next pair to form a new
remainder.

14. 6
21316

=N
[SN1-N

24 113
_96
1716

To complete the solution of extracting the
square root, simply repeat the procedure set
forth in this step for each period of numbers
remaining. It is unnecessary to carry the root
beyond the number of digits possessed by the
original number.

14. 6
\213.16
1
24 113
96
286 1716
1716

The decimal is placed in the root so that the
number of digits in the whole number portion
of the root is equal to the sum of the periods, or
pairs, in the whole number portion of the num-
ber from which the root was extracted.



Section 19

Computing Area

Formulas used in measuring deal with the
dimensions, areas, and volumes of geometric
figures. There are six geometric figures with
which the technician should be familiar, and
there is a separate formula for finding the area
of each. These figures are the rectangle, the
square, the triangle, the parallelogram, the
trapezoid, and the circle.

Areas are measured in different units. An area that
is square and 1 inch on each side is called a square
inch. All area units are square units, such as square
inch, square foot, square yard, square rod, square
mile, square centimeter, and the square meter. The
area of a figure is equal to the number of square
units it contains (Table 1-19-1.)

The technique for determining the area of any
geometric shape is based upon the use of for-
mulas. To solve a problem by formula, it is nec-
essary to:

1. Select the formula that covers the problem
situation.

2. Insert the known values in the selected
formula.

3. Then make the necessary mathematical mani-
pulations to find the unknown quantity.

Table of areas

1 square foot
=LxW
=12"x 12"
= 144 in?
9 square feet (ft.?) = 1 square yard
=LxW
=3x3
= 9ft?
30 1/4 square yards = 1 square rod
(yd-%) =LxW
=55ydx5.5yd
= 30 1/4yd?
160 square rods (rd?) = 1 acre
=LxW
= 12.64 rd x 12.64 rd
= 160 rd?
640 acres (A) = 1 square mile
=LxW
= 25.29 Ax 2529 A
= 640 A

Table 1-19-1. Table of areas.

144 square inches (in.?)
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Area of a rectangle. A rectangle is a four-sided
figure whose opposite sides are of equal length.
All angles of the rectangle are right angles
(90°), the sum of which equals 360°. The cross-
sectional area of many beams, rods, fittings,
etc. (Figure 1-19-1) are rectangles.

The area of a rectangle is the product of the mea-
sures of the length and width when they are
expressed in the same units of linear measure.
The area may be expressed by the formula:

A= LW
Where:
A = Area

L = Length of rectangle
W = Width of rectangle

As an example, a certain aircraft panel is in the
form of a rectangle having a length of 24 inches
and a width of 12 inches. What is the area of the
panel expressed in square inches?

First determine the known values and substitute
them in the formula.

A= LW
A = 24" x 12"

Perform the indicated multiplication; the
answer will be the total area in square inches.

A =24x12=288in’

Area of a square. A square is a figure having
four equal sides and four right angles (Figure
1-19-2). The sum of all angles of a square, like
the rectangle, equal 360°.

To determine the area of a square, find the
product of the length of any two sides. Since
a square is a figure whose sides are equal, the
formula can be expressed as the square of the
sides or:

A=¢
where A is the area and S is the length of a side.

As an example, what is the area of a square
plate whose side measures 25 inches?

Determine the known value and substitute it
in the formula

A=¥§
A =25

Next, perform the indicated multiplication. The
answer will be the total area in square inches.

A = 25x25=625in’

Area = LW

w

Figure 1-19-1.
A rectangle.

S

Area =52

Figure 1-19-2.
A square.
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Scalene

Unequal side
and angles

T
h

<—b—>

Obtuse

Area of a triangle. A triangle is a three-sided
polygon. There are three basic types of triangle:
scalene, equilateral or equiangular, and isosce-
les. A scalene triangle is one in which all sides
and angles are unequal, whereas the equilat-
eral triangle, being just the opposite, has equal
sides and equal angles. A triangle that has two
equal sides and angles is known as an isosce-
les triangle. The various types of triangles are
shown in Figure 1-19-3.

The sum of all of the angles of a triangle equal
180°.

Triangles may be further classified as either
right, obtuse, or acute. These terms are
descriptive of the included angles of the
triangle. A right triangle is one that has one
angle measuring 90°. In an obtuse triangle, one
angle is greater than 90° while in an acute
triangle all the angles are less than 90°.

The base of a triangle is the side upon which
the triangle is supposed to stand. Any side may
be taken as the base.

Vertex is a common endpoint of the angles, or
the point where the sides of the triangle meet.

The altitude of a triangle is the perpendicu-
lar line drawn from the vertex to the base. In
some triangles, as in Figure 1-19-4, it may be

Equilateral or
qui’ Isosceles
Equiangular

Two equal

Equal sides and angles sides and angles

> —»

-

>

Right-one angle = 90°
Obtuse-one angle > 90°
Acute - all angles < 90°

<«—pb—>»

Acute

Figure 1-19-3. Types of triangles.

necessary to extend the base so that the alti-
tude will meet it.

The hypotenuse of a triangle is the side which
is neither the altitude nor the base. It is most
often the longest side in scalene and isosceles
triangles.

2!6"
Altitude

R T

|+——3'2"-Base—>1

Figure 1-19-4. Triangle.
The area of any triangle may be calculated by
using the formula:

A=1/2 ab

where A is equal to Area; 1/2 is a given constant;
a is the altitude of the triangle; and b is the base.

As an example, find the area of the triangle
shown in Figure 1-19-4.

First, substitute the known values in the area
formula.

A=1/2ab=A=1/2x 26" x 32"
Then, solve the formula for the unknown value.

A=1/2 x 30 x 38 = 1140/>
A=570in’

Area = LW w

1

Figure 1-19-5.Finding the area of a parallelogram.

I L |

Area of a parallelogram. A parallelogram can
be simply described as a rectangle with corner
angles other than 90°. However, like the rect-
angle, opposite sides are of equal length, and
the sum of all corner angles is equal to 360°.
Diametrically opposite corner angles of a par-
allelogram are equal (Figure 1-19-5).

The area of a parallelogram is computed in the
same manner as that of the rectangle with one
principal difference; width is measured per-
pendicular to the length, not along the perim-
eter (outside edge) as in a rectangle (Figure
1-19-5.)
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Figure 1-19-7. Computing the area of a trapezoid.

14"

Area of a trapezoid. A four sided polygon,
the trapezoid consists of two parallel sides, and
two sides adjacent to the parallel sides which,
unlike the rectangle or parallelogram, are not
parallel to each other. While the total of all four
angles of the trapezoid equal 360°, diametrically
opposite corner angles of the trapezoid are not
equal, as they are in the parallelogram.

The area of a trapezoid is computed by using
the formula:

A=1/2(b,+b)h

where A is the area; 1/2 is the given constant; b,
and b, are the lengths of the two parallel sides;
and h is the height (Figure 1-19-6.)

The following example illustrates calculation
of the area of a trapezoid. What is the area of
a trapezoid whose bases are 14 inches and 10
inches, and whose altitude is 6 inches? (Figure
1-19-7)

Substitute the known values in the formula.

A=1/2 (b, + b,) h
A=1/2 (10 +14) 6

Next, solve the formula for the unknown value.

A=1/2 (24) 6
A=1/2 x 144
A=72in’

Area of a circle. To find the area of a circle, it
is necessary to use a number called pi (). This
number represents the ratio of the circumference
to the diameter of any circle. Because that ratio is
the same regardless of the size of the circle, 7t is
a constant. Which means that it is a fixed figure,
which does not change. But 7 cannot be found
exactly because it is, theoretically, a never-ending
decimal. However, expressed to four decimal
places it is 3.1416, which is accurate enough for
most computations (Figure 1-19-8.)

The area of a circle, as in a rectangle or triangle,
must be expressed in square units. The diameter
of a circle is the distance between any two most
distant points on the circle. In other words, the
diameter is the distance across the circle. The
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distance that is one-half the diameter of a circle
is known as the radius.

The area of any circle is found by squaring the
radius and multiplying by m. The formula is
expressed thus:

A=T1r

where A is the area of a circle; 7 is the given
constant; and r is the radius of the circle.

c,‘\rcumfere,,(.e

(©

Diameter (d)
N

Figure 1-19-8. A circle.

In a sample problem to determine area of a cir-
cle, the bore (inside diameter) of a certain air-
craft engine cylinder is 5 inches. Find the cross
sectional area of this bore.

First substitute the known values in the
formula, A = nir’.

A=3.1416 x 2.5

Then solve the formula for the unknown
value.

A=3.1416 x 6.25
A=19.635 in’

Section 20

Measurement of Solids

Solids are objects with three dimensions; length,
breadth, and thickness. They are of many
shapes, including prisms, cylinders, pyramids,
cones, and spheres. Occasionally, it is necessary
to determine the volume of some of the most
common solids, such as the rectangle, the cube,
the cylinder, or the sphere.

Figure 1-19-6.
A trapezoid.
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Figure 1-20-2. A cube.

Since all volumes are not measured in the same
units, it is necessary to know all the common units
of volume and how they are related to each other.

1,728in3 = 1ft.3
27ft3 = 1yd3
231in3 = 1gqal
75gal. = 1ft3
2pt. = 1qt
4qt. = 1gal

Table 1-20-1. Units of space measure.

For example, the technician may know the
volume of a tank in cubic feet or cubic inches,
but when the tank is full of gasoline, he will
be interested in how many gallons it contains.
Table 1-20-1 shows the relationship between
some of the common units of volume.

Volume of a rectangular solid. A rectangu-
lar solid is a solid bounded by rectangles. In
other words, it is a square-cornered volume,
such as a box (Figure 1-20-1).

|
Figure 1-20-1. A rectangular solid.

The formula for determining the volume of a
rectangular solid may be expressed thus:

V=lwh
where:

V=Volume
w = width
I=length
h=height

As an example, a rectangular-shaped baggage
compartment measures 5 feet 6 inches in length, 3
feet4 inches in width, and 2 feet 3 inches in height.
How many cubic feet of baggage will it hold?

Substitute the known values into the formula.

V=Ilwh
V=5'6" x 34" x 2'3"

Next, solve the formula for the unknown value.

V=56"x34"x2'3"
V=51/2"x31/3"x 21/4"
V=51/2x31/3x21/a

11,109
~2%3%%
V=18 a5

Notice the figures retain the ft increments for
ease of conversion.

Volume of a cube. If the solid has equal
dimensions, it is called a cube and the formula
can be expressed by using an exponent.

The formula for a cube, or rectangular solid
(Figure 1-20-2), can be expressed as the cube of
the sides:

V=S’

where V is the volume and S is the side
measurement of the cube.

V=S’
V=(—|2n)3
v=1,728 in’

Volume of a cylinder. A solid having circular
ends with a length between those ends, such
as a can, length of pipe, or other such object
is called a cylinder. To be a true cylinder,
the circular ends must be identical in size, as
shown in Figure 1-20-3.

The volume of a cylinder may be found by
multiplying the cross-sectional area of the cir-
cular ends, by the height of the cylinder. The
formula may be expressed as:

V = mtrh
where V is the volume; 7 is the given constant;

r’is the square of the radius of the cylinder; and
h is the height of the cylinder.

:

Figure 1-20-3. A cylinder.



The following example is used to illustrate find-
ing the volume of a cylinder. The cylinder of
an aircraft engine has a bore (inside diameter)
of 5.5 inches and the engine has a stroke of 5.5
inches. What is the piston displacement of one
cylinder? The stroke represents the height of the
cylinder to be measured, because the volume
displaced by the piston depends on the length
of the stroke. (Figure 1-20-4)

First substitute the known values in the formula.

V=1trh
V=(3.1416) (2.75%) (5.5)

Then solve the formula for the unknown value.

V =17.28 x 7.56
V = 130.64 in’

Volume of a sphere. A sphere is a round three-
dimensional object whose entire surface is
located at an equal distance from the point which
is the exact center of the sphere. Because of its
strength and ability to withstand extremely high
internal pressures, the sphere is used in a variety
of applications on aircraft where these attributes
are needed, such as liquid oxygen converters and
hydraulic accumulators.

The volume of a sphere is determined by mul-
tiplying the cube of the diameter by a factor
which is one-sixth of 7, or 0.5236.

As an example of determining the volume of a
sphere, if a spherical hydraulic accumulator is 8
inches in diameter, what is the total volume?

First, cube the diameter.
8=8x8x8=512

Then multiply the cubed diameter by one-sixth
of m.

512 (0.5236) = 268.08 = 268 cubic inches

Section 21
Trigonometric Functions

Trigonometry is a very practical and handy
tool for use in the measurement of triangles. Its
use simplifies many of our layout problems in
sheet metal, and it makes possible the under-
standing of such subjects as alternating current
electricity.

Trigonometry deals with relationships that
exist between the lengths of the three sides and
the three angles of a triangle. While trigonometry
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Figure 1-20-4. How cylinder displacement is measured.

can become very complex, for the purposes of
the aircraft technician, the primary concern
will be with right triangles.

Figure 1-21-1 is a right triangle with the angles
and sides identified. Angle C is the right angle.
For this explanation, we will use angle A as the
angle for which we are setting up the relation-
ships. Side c is the hypotenuse, which, by defini-
tion, is the side opposite the right angle. Side a is
the side opposite angle A, and side b is the side
adjacent, or next to, angle A.

The sine of angle A is the ratio of the length of
the side opposite the angle to the length of the
hypotenuse. For any degree of angle A, this
ratio will be constant, regardless of the size of
the triangle. In the chart of Table 1-21-1, we see
that the sine of 30°, which is written Sin 30°, is
0.500. This means that the side opposite the 30°
angle will be 50 percent, or one-half, the length
of the hypotenuse. For a 45° angle, the ratio is
0.7071. The side opposite the 45° angle is 0.7071
times the length of the hypotenuse.

The cosine (cos) of an angle is the ratio of the
length of the side adjacent to the angle to the
length of the hypotenuse, and is found in the

Stroke—>|

f«—-~n

Piston at bottom center
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same way we found the sine of the angle. The
cosine of 25° is 0.9063, and for 75°, it is 0.2588.

The tangent is the third ratio of interest in this
brief introduction to trigonometry. This is the
ratio of the length of the side opposite the
angle, to the side adjacent the angle. The tan-
gent of 20° is 0.3640, and for 70° is 2.747.

Trigonometric charts usually list the angles only
to 45° in a single column, as can be seen by the
numbers in the lefthand column of Table 1-21-1.
But notice that in the extreme right-hand column,

Trigonometric functions

Deg Sin Cos Tan Cotan
0 0.0 1.0000 |0.0 90°
1 0.0175 | 0.9999 |0.0175 |57.29 89°
2 0.0349 | 0.9994 |0.0349 |28.64 88°
3 0.0523 | 0.9986 |0.0524 [19.08 87°
4 0.0698 | 0.9976 |0.0699 |14.30 86°
5 0.0872 | 0.9962 |0.0875 [11.43 85°
6 0.1045 | 0.9945 |0.1051 9.514 | 84°
7 0.1219 | 0.9926 |0.1228 | 8.144 | 83°
8 0.1392 | 0.9903 |0.1405 7115 | 82°
9 0.1564 | 0.9877 |0.1584 | 6.314 | 81°
10 0.1737 | 0.9848 [0.1763 | 5.671 80°
11 0.1908 | 0.9816 [0.1944 | 5.145 | 79°
12 0.2079 | 0.9782 |0.2126 | 4.705 | 78°
13 0.2250 | 0.9744 |0.2309 | 4.331 77°
14 0.2419 | 0.9703 [0.2493 | 4.011 76°
15 0.2588 | 0.9659 [0.2680 | 3.732 | 75°
16 0.2756 | 0.9613 |0.2868 | 3.487 | 74°
17 0.2924 | 0.9563 |0.3057 | 3.271 73°
18 0.3090 | 0.9511 [0.3249 | 3.078 | 72°
19 0.3256 | 0.9455 [0.3443 | 2.904 | 71°
20 0.3420 | 0.9397 |0.3640 | 2.747 | 70°
21 0.3584 | 0.9336 [0.3839 | 2.605 | 69°
22 0.3746 | 0.9272 |0.4040 | 2.475 | 68°
23 0.3907 | 0.9205 |0.4245 | 2.356 | 67°
24 0.4067 | 0.9136 |0.4452 | 2.246 | 66°
25 0.4226 | 0.9063 |0.4663 | 2.145 | 65°
26 0.4384 | 0.8988 |0.4877 | 2.050 | 64°
27 0.4540 | 0.8910 | 0.5095 1.963 | 63°
28 0.4695 | 0.8830 |0.5317 | 1.881 62°
29 0.4848 | 0.8746 |0.5543 | 1.804 | 61°
30 0.5000 | 0.8660 |0.5774 | 1.732 | 60°
31 0.5150 | 0.8572 |0.6009 | 1.664 | 59°
32 0.5299 | 0.8481 |0.6249 | 1.600 | 58°
33 0.5446 | 0.8387 [0.6494 | 1.540 | 57°
34 0.5592 | 0.8290 |0.6745 1.483 | 56°
35 0.5736 | 0.8192 [0.7002 | 1.428 | 55°
36 0.5878 | 0.8090 |0.7265 1.376 | 54°
37 0.6018 | 0.7986 |0.7536 | 1.327 | 53°
38 0.6157 | 0.7880 |0.7813 | 1.280 | 52°
39 0.6293 | 0.7772 |0.8098 | 1.235 | 51°
40 0.6428 | 0.7660 |0.8391 1.192 | 50°
41 0.6561 | 0.7547 |0.8693 | 1.150 | 49°
42 0.6691 | 0.7431 |[0.9004 | 1.111 48°
43 0.6820 | 0.7314 |0.9325 1.072 | 47°
44 0.6947 | 0.7193 |0.9657 | 1.036 | 46°
45 0.7071 | 0.7071 |1.0000 | 1.000 | 45°

Cos Sin Cotan Tan Deg

Table 1-21-1. Table of trigonometric functions.

C = Right angle

¢ = Hypotenuse

A = Angle being considered

a = Side opposite B
b = Side adjacent

A C
b

Sine A _ Side opposite a
(Sin A)~ Hypotenuse ~ ¢
Cosine A _ Side adjacent _ b
(CosA) ~ Hypotenuse €
Tangent A _ Side opposite _a
(Tan A) Side adjacent b

Figure 1-21-1. The trigonometric relations of a
right triangle.

the numbers start at 45° and go upward to 90°.
In addition, the names of the columns at the
bottom are opposite the names at the top of the
same column. Reading up in the right column,
we find 60°, and in the sine column (at the bot-
tom of the chart) we find that sine 60° = 0.8660.

In any triangle, the sum of the angles is always
180°. With the use of trigonometry, when we
know the size of angle A, we can find angle
B, or angle C. And when we know the length
of one side and one angle (other than the 90°
angle), all other sides and angles can be
computed for right triangles.

Angle B =90° - Angle A

Section 22
Graphs and Charts

Graphs and charts are pictorial presentations of
data, equations, and formulas.

The relationship between two or more quanti-
ties may be more clearly understood through
their use. Also, a person can see certain con-
ditions or relationships at a glance, while it
would require considerable time to obtain the
same information from a written description.
Graphs may be used in a number of ways, such
as representing a single equation or formula, or
to solve two equations for a common value.

Graphs and charts take many forms. A few of
the more common forms are called bar graphs,
pictographs, broken-line graphs, continuous-
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curved-line graphs, and pie charts. An example
of each is shown in Figure 1-22-1. The most

useful of these graphs in technical work is the

[ continuous-curved-line graph.
Interpreting or reading graphs and charts.
i It is more important, from the mechanic’s
I I viewpoint, to be able to read a graph properly

thanitis to draw one. The relationship between
the horsepower of a certain engine at sea level

A. Bar graph and at any altitude up to 10,000 feet can be
determined by use of the chart in Figure 1-22-2. To
use this type of chart, simply find the point on

2001 ’+ "F the horizontal axis that represents the desired

altitude; move upward along this line to the
point where it intersects the curved line; then
2002 move to the left, reading the percent of sea level

horsepower available on the vertical axis.

2003 ".:‘ "F "F "F "F As an example, what percent of the sea level horse-

power is available at an altitude of 5,000 feet?

=~

- Pictograph First locate the point on the horizontal axis that

represents 5,000 feet. Move upward to the point
— where the line intersects the curved line.

Then move to the left, reading the percent of
sea level horsepower available at 5,000 feet. The
available horsepower is 80 percent.

-
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Figure 1-22-2. Horsepower vs. altitude chart.
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D. Continuous curved line graph
arap Nomograms. It is often necessary to make

calculations using the same formula, but with
different sets of values for the variables. It is
possible to obtain a solution by use of a calculator,
or by preparing a table giving the solution of
the formula resulting from successive changes
of each variable. However, in the case of formulas
involving several mathematical operations, the
labor involved is usually very extensive.

Itis possible to avoid all this labor by using a dia-
E. Pie chart gram representing the formula, in which each
variable is represented by one or more gradu-

Figure 1-22-1. Types of graphs. ated lines. From this diagram, the solution of the
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Circuit Voltage

General Mathematics

Electric wire chart
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Figure 1-22-3. Sample of a nomogram.

formula for any given variable may be read by
means of an index line. A diagram of this type is
known as a nomogram (Figure 1-22-3).

Much of the information needed to solve aero-
nautical problems is presented in nomogram
form. Instruction manuals for the various air-
craft contain numerous nomograms, many of
which are quite complex. Many of them will pos-
sess several curves on the same coordinate axis,

Metric
length | Mass Volume Temperature Electric | Time
Meter |Kilogram Liter Celsius/centigrade | Ampere | Second
Customary (English)

Inch Ounce | Fluid ounce | Fahrenheit Ampere | Second
Foot Pound | Teaspoon Minute
Fathom | Ton Tablespoon Hour
Rod Grain Cup
Mile Dram Pint

Quart

Gallon

Barrel

Peck

Bushel

Table 1-23-1. Some common units.

each curve drawn for different constants in the
equation. In the latter case, it is essential to select
the proper curve for the desired conditions.

Section 23

Measurement Systems
and Conversion

Our customary system of measurement
involves the English units of inches, feet, yards,
and miles that have been refined from earlier
crude measuring units and devices. An exam-
ple of common English and metric units is con-
tained in Table 1-23-1.

The metric system is the dominant language
of measurement in use in the world today. The
United States is the only developed country in
which the metric system of measurement is not
in widespread use.

Using a meter as a standard, the metric sys-
tem was developed by the French statesman,
Talleyrand, in 1789. The meter is a specific por-
tion of the circumference of the earth at the
equator. It was intended to equal 107 or one ten-



millionth of the length of the meridian through
Paris from pole to the equator. From this base
measurement the meter was developed and
accepted as the standard. Divisions and multi-
ples of the meter are based on the decimal sys-
tem. In 1983 the CGPM (General Conference on
Weights and Measures, or Conférence Générale
des Poids et Mesures) replaced the previous
definition with the following one: the meter is
the length of the path traveled by light in vac-
uum during a time interval of 1/299,792,458 of
a second.

No other system of measurement that has been
actually used can match the inherent simplicity of
the metric system. It was designed deliberately to
fill all the needs of scientists and engineers. Laymen
need only know and use a few simple parts of it.

It is logically streamlined. At this time there
are only six base units in the International
Metric System.

e The unit of length is the meter.

e The unit of mass is the gram.

e The unit of time is the second.

e The unit of electric current is the ampere.

e The unit of temperature is the Kelvin
(which in common use is translated into
the degree Celsius, formerly called degree
centigrade).

e The unit of luminous intensity is the candela.

All the other units of measurement in the
International Metric System are derived from
these six base units. Area is measured in square
meters; speed in meters per second; density in
kilograms per cubic meter.

* The newton, the unit of force, is a simple
relationship involving meters, kilograms,
and seconds; and the pascal, unit of
pressure, is defined as one newton per
square meter.

In some other cases, the relationship
between the derived and base units must be
expressed by rather more complicated for-
mulas which is inevitable in any measure-
ment system, because of the innate com-
plexity of some of the things we measure.

Similar relationships among mass, area,
time, and other quantities in the
customary system usually require similar
formulas, made all the more complicated
because they can contain arbitrary
constants. For example, one horsepower is
defined as 550 foot-pounds per second.
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When you know:

You can find:

If you multiply by:

Length
Inches Millimeters 25.4
Feet Centimeters 30.0
Yards Meters 0.9
Miles Kilometers 1.6
Millimeters Inches 0.04
Centimeters Inches 0.4
Meters Yards 1.1
Kilometers Miles 0.6
Area
Square inches Square centimeters 6.5
Square feet Square meters 0.09
Square yards Square meters 0.8
Square miles Square kilometers 2.6
Acres (Sﬂggtr;rgsctometers 04
Square centimeters Square inches 0.16
Square meters Square yards 1.2
Square kilometers Square miles 0.4
(Sﬂggtr;argf)ctometers Acres 25
Mass
Ounces Grams 28.0
Pounds Kilograms 0.45
Short tons ?A,v?gt?_%r?g?fs) 0.9
Grams Ounces 0.035
Kilograms Pounds 2.2
’(\{\I/(Iee?t?%r?&ss) Short tons 1.1
Liquid volume
Ounces Millimeters 30.0
Pints Liters 0.47
Quarts Liters 0.95
Gallons Liters 3.8
Milliliters Ounces 0.034
Liters Pints 2.1
Liters Quarts 1.06
Liters Gallons 0.26
Temperature

Degrees Fahrenheit

Degrees Celsius

5/9 (after subtracting 32)

Degrees Celsius

Degrees Fahrenheit

9/5 (then add 32)

Table 1-23-2. Converting customary units.

English-metric conversion multiples and
prefixes. Based on the decimal system, multiples
and sub-multiples of any given unit are always
related by powers of 10 in the metric system. For
instance, there are 10 millimeters in 1 centime-
ter; 100 centimeters in 1 meter; and 1,000 meters
in 1 kilometer. This greatly simplifies converting
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larger to smaller measurements. For example, in
order to calculate the number of meters in 3.794
kilometers, multiply by 1,000 (move the decimal
point three places to the right) and the answer is
3,794. For comparison, in order to find the num-
ber of inches in 3.794 miles, it is necessary to mul-
tiply first by 5,280 and then by 12 (Table 1-23-2).

Multiples and submultiples of all the
International Metric units follow a consistent
naming scheme, which consists of attaching a
prefix to the unit, whatever it may be. For exam-
ple, kilo stands for 1,000: 1 kilometer equals
1,000 meters, and 1 kilogram equals 1,000 grams.
Micro is the prefix for one millionth: one meter
equals one million micrometers, and one gram
equals one million micrograms (Table 1-23-3).

To convert inches to millimeters, multiply the
number of inches by 25.4. (Example: 25 in to
mm = 25 x 25.4 = 635 mm)

To convert millimeters to inches, multiply mil-
limeters by .04. (Example: 625 mm x .04 = 25 in)

To convert square inches to square centimeters,
multiply by 6.5. (Example: 100 in” x 6.5 = 650 cm”)

To convert square centimeters to square inches,
multiply by 0.16. (Example: 100 x 0.16 = 16 in”)

Provided for ease in converting fractions, deci-
mals, and millimeters, in Table 1-23-4 various
measurements starting at 1/64 inch up to 20
inches have been converted to decimal divi-
sions of inches and to millimeters.

Section 24

Functions of Numbers

The Functions of Numbers chart (Table 1-24-1)
is included in this chapter for convenience in
making computations. Familiarization with
the various parts of this chart will illustrate the
advantages of using ready-made computations.

The number (No.) column contains the
numbers 1 through 100. The other columns
contain computations for each number.

The square column is the product obtained by
multiplying a number by itself: 1 x 1 =1, 2 x
2 =4, 17 x 17 = 289. Squaring may be consid-
ered a special form of area computation: Area =
Length multiplied by Width (A =L x W).

The cube column is the product obtained by
multiplying a number by itself, then multi-
plying that product by the number again: 1 x 1

Prefix | Exp. | Means Symbol
Tera (102 | One trillion times T
Giga | (109 | One billion times

Mega | (10%9) | One million times M
Kilo (103 | One thousand times k
Hecto | (102 | One hundred times h
Deca (10) | Ten times da
Deci | (10D | One tenth of d
Centi | (102 | One hundredth of c
Milli (10-3) | One thousandth of m
Micro | (10°® | One millionth of u
Nano | (10" | One billionth of n
Pico (10712 One trillionth of p

Table 1-23-3. Names and symbols for metric
prefixes.

x1=1,2x2x2=8,13 x13 x 13 =2,197. Cubing
may be considered a specialized form of
volume computation: Volume = Length
multiplied by Width by Height (V=L x W x H).

The square root column is the opposite of a
squared number. The square root of a number
is that number which when multiplied by itself
(squared) will produce the original or desired
number: For example, the square root of 1is 1,
1 x 1 = 1. The square root of 4 is 2. The square
root of 24 is 4.8990.

The cube root column represents the opposite
of the cube column. The cube root of a number
is that number which when multiplied by itself
(cubed) will produce the original or desired
number. The cube root of 1is 1,1 x1x 1 =1.
The cube root of 27 is 3, 3 x 3 x 3 = 27. If a con-
tainer of 100 cubic inches and cubic in shape is
desired, then the length of each side would be
4.6416.

The circumference column represents the cir-
cumference of a circle. Circumference is the lin-
ear measurement of the distance around a circle.
The circumference is calculated by multiplying
the diameter of the circle by the constant 3.1416
(). This constant was calculated by dividing the
circumference of circles by their diameter.

The area column represents the area of a circle.
Area of a circle is the number of square units
of measurement contained within the area cir-
cumscribed by a circle of the diameter of the
listed number. This is calculated by the for-
mula (1) x * = a, (1) multiplied by the radius
squared equals area. The radius is equal to one-
half the diameter.
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Inches Decimals mm
— 0.0004 .010
— 0.0040 .100
— 0.0100 .250

1/64 0.0156 400
— 0.0197 .500
— 0.0295 .750

1/32 0.0312 .790
— 0.0395 1.00

3/64 0.0469 1.19
— 0.0590 1.50

1/16 0.0620 1.59

5/64 0.0787 2.00
— 0.0984 2.50

7/64 0.1090 2.78
— 0.1181 3.00
1/8 0.1250 3.17
— 0.1378 3.50

9/64 0.1410 3.65

5/32 0.1560 3.97
— 0.1575 4.00

11/64 0.1720 4.37
— 0.1770 4.50

3/16 0.1875 4.76
— 0.1969 5.00

13/64 0.2030 5.16
— 0.2165 5.50

7/32 0.2190 5.56

15/64 0.2340 5.95
— 0.2362 6.00
1/4 0.2500 6.35
— 0.2559 6.50

17/64 0.2656 6.75
— 0.2756 7.00

9/32 0.2810 7.14
— 0.2953 7.50

19/64 0.2970 7.54

5/16 0.3120 7.94
— 0.3150 8.00

21/64 0.3280 8.33
— 0.3350 8.50

11/32 0.3440 8.73
— 0.3543 9.00

23/64 0.3590 9.13
— 0.3740 9.50
3/8 0.3750 9.53

25/64 0.3910 9.92
— 0.3937 10.00

13/32 0.4060 10.32
— 0.4130 10.50

27/64 0.4220 10.72
— 0.4331 11.00

7/16 0.4380 11.11

29/64 0.4530 11.51
— 0.4724 12.00

31/64 0.4840 12.30
— 0.4920 12.50
1/2 0.5000 12.70
— 0.5118 13.00

33/64 0.5156 13.10

17/32 0.5310 13.49

35/64 0.5470 13.89
— 0.5512 14.00

9/16 0.5630 14.29
— 0.5710 14.50

37/64 0.5780 14.68
— 0.5906 15.00

19/32 0.5940 15.08

39/64 0.6090 15.48
5/8 0.6250 15.87
— 0.6299 16.00

41/64 0.6406 16.27
— 0.6496 16.50
21/32 0.6560 16.67
— 0.6693 17.00
43/64 0.6720 17.07
11/16 0.6875 17.46
45/64 0.7030 17.86
— 0.7087 18.00
23/32 0.7190 18.26
— 0.7283 15.50
47/64 0.7430 18.65
— 0.7480 19.50
3/4 0.7500 19.05
49/64 0.7656 19.45

25/32 0.7810 19.84 — 2.1650 55.00 — 3.6614 93.00
— 0.7874 20.00 2—3/16 2.1875 55.56 3—11/16 3.6875 93.66
51/64 0.7970 20.24 — 2.2047 56.00 — 3.7008 94.00
13/16 0.8125 20.64 2—7/32 2.2190 56.36 3—23/32 3.7190 94.45
— 0.8268 21.00 — 2.2440 57.00 — 3.7401 95.00
53/64 0.8280 21.03 2—1/4 2.2500 5715 3—3/4 3.7500 95.25
27/32 0.8440 21.43 2—9/32 2.2810 57.94 — 3.7795 96.00
55/64 0.8590 21.83 — 2.2835 58.00 3—25/32 3.7810 96.04
— 0.8661 22.00 2—5/16 2.3120 58.74 3—13/16 3.8125 96.83
7/8 0.8750 22.23 — 2.3228 59.00 — 3.8189 97.00
57/64 0.8906 22.62 2—11/32 2.3440 59.53 3—27/32 3.8440 97.63
— 0.9055 23.00 — 2.3622 60.00 — 3.8583 98.00
29/32 0.9062 23.02 2—3/8 2.3750 60.32 3—7/8 3.8750 98.42
59/64 0.9220 23.42 — 2.4016 61.00 — 3.8976 99.00
— 0.9449 24.00 2—13/32 2.4060 61.12 3—29/32 3.9062 99.21
61/64 0.9530 24.21 2—7/16 2.4380 61.91 — 3.9370 100.00
31/32 0.9690 24.61 — 2.4409 62.00 3—15/16 3.9375 100.01
— 0.9843 25.00 2—15/16 2.4690 62.71 3—31/32 3.9690 100.80
63/64 0.9844 25.00 — 2.4803 63.00 — 3.9764 101.00
1 1.0000 25.40 2—1/2 2.5000 63.50 4 4.0000 101.60
— 1.0236 26.00 — 2.5197 64.00 4—1/16 4.0620 103.18
1—1/32 1.0312 26.19 2—17/32 2.5310 64.29 4—1/8 4.1250 104.77
1—1/16 1.0620 26.99 — 2.5590 65.00 — 4.1338 105.00
— 1.0630 27.00 2—9/16 2.5620 65.09 4—3/16 4.1338 106.36
1—3/32 1.0940 27.78 2—19/32 2.5940 65.88 4—1/4 4.2500 107.95
— 1.1024 28.00 — 2.5984 66.00 4—5/16 4.3120 109.53
1—1/8 1.1250 28.57 2—5/8 2.6250 66.67 — 4.3307 110.00
— 11417 29.00 — 2.6380 67.00 4—3/8 4.3750 111.12
1—5/32 1.1560 29.37 2—21/32 2.2560 67.47 4—7/16 4.4380 122.71
— 1.1811 30.00 — 2.6772 68.00 4—1/2 4.5000 114.30
1—3/16 1.1875 30.16 2—11/16 2.6875 68.26 — 4.5275 115.00
1—7/32 1.2190 30.96 — 2.7165 69.00 4—9/16 4.5620 115.88
— 1.2205 31.00 2—23/32 2.7190 69.06 4—5/8 4.6250 117.47
1—1/4 1.2500 31.75 2—3/4 2.7500 70.00 4—11/16 4.6875 119.06
— 1.2958 32.00 2—25/32 2.7810 70.64 — 4.7244 120.00
1—9/32 1.2810 32.54 — 2.7953 71.00 4—3/4 4.7500 120.65
— 1.2992 33.00 2—13/16 2.8125 71.44 4—13/16 4.8125 122.23
1—5/16 1.3120 33.34 — 2.8346 71.44 4—7/8 4.8750 123.82
— 1.3386 34.00 2—27/32 2.8440 72.23 — 4.9212 125.00
1—11/32 1.3440 3413 — 2.8740 73.00 4—15/16 4.9375 125.41
1—3/8 1.3750 34.92 2—7/8 2.8750 73.02 5 4.0000 127.00
— 1.3779 35.00 2—29/32 2.9062 73.82 — 5.1181 130.00
1—13/32 1.4060 35.72 — 29134 74.00 5—1/4 5.2500 133.35
— 1.4173 36.00 2—15/16 2.9375 74.81 5—1/2 5.5000 139.70
1—7/16 1.4380 36.51 — 2.9527 75.00 — 5.1161 140.00
— 1.4567 37.00 2—31/32 2.9690 7541 5—3/4 5.7500 146.05
1—15/32 1.4690 37.31 — 2.9921 76.00 — 5.9055 150.00
— 1.4961 38.00 3 3.0000 76.20 6 6.0000 152.40
1—1/2 1.5000 38.10 3—1/32 3.0312 76.99 6—1/4 6.2500 158.75
1—17/32 1.5310 38.89 — 3.0315 77.00 — 6.2992 160.00
— 1.5310 39.00 3—1/16 3.0620 77.79 6—1/2 6.5000 165.10
1—9/16 1.5620 39.69 — 3.0709 78.00 — 6.6929 170.00
— 1.5748 40.00 3—3/32 3.0940 78.58 6—3/4 6.7500 171.45
1—19/32 1.5940 40.48 — 3.1102 79.00 7 7.0000 177.80
— 1.6142 41.00 3—1/8 3.1250 79.37 — 7.0866 180.00
1—5/8 1.6250 41.27 — 3.1496 80.00 — 7.4803 190.00
— 1.6535 42.00 3—5/32 3.1560 80.17 7—1/2 7.5000 190.50
1—21/32 1.6562 42.07 3—3/16 3.1875 80.96 — 7.8740 200.00
1—11/16 1.6875 42.86 — 3.1890 81.00 8 8.0000 203.20
— 1.6929 43.00 3—7/32 3.2190 81.76 — 8.2677 210.00
1—23/32 1.7190 43.66 — 3.2283 82.00 8—1/2 8.5000 215.90
— 1.7323 44.00 3—1/4 3.2500 82.55 — 8.6614 220.00
1—3/4 1.7500 44.45 — 3.2677 83.00 9 9.0000 229.60
— 1.7717 45.00 3—9/32 3.2810 83.34 — 9.0551 230.00
1—25/32 1.7810 45.24 — 3.3071 84.00 — 9.4488 240.00
— 1.8110 46.00 3—5/16 3.3120 84.14 10 10.000 254.00
1—27/32 1.8440 46.83 3—11/32 3.3440 84.93 10.236 260.00
— 1.8504 47.00 — 3.3464 85.00 — 10.629 270.00
1—7/8 1.8750 47.63 3—3/8 3.3750 85.73 11 11.000 279.40
— 1.8898 48.00 — 3.3858 86.02 — 11.023 280.00
1—29/32 1.9062 48.42 3—31/32 3.4060 86.52 — 11.417 290.00
— 1.9291 49.00 — 3.4252 87.00 — 11.811 300.00
1—15/16 1.9375 49.21 3—7/16 3.4380 87.31 12 12.000 304.80
— 1.9685 50.00 — 3.4646 88.00 13 13.000 330.20
1—31/32 1.9690 50.01 3—15/32 3.4690 88.11 — 13.779 350.00
2 2.0000 50.80 3—1/2 3.5000 88.90 14 14.000 355.60
— 2.0079 51.00 — 3.5039 89.00 15 15.000 381.00
2—1/32 2.0312 51.59 3—17/32 3.5310 89.69 — 15.748 400.00
— 2.0472 52.00 — 3.5433 90.00 16 16.000 406.40
2—1/16 2.0620 52.39 3—9/16 3.5620 90.49 17 17.000 431.80
— 2.0868 53.00 — 3.5827 91.00 — 17.716 450.00
2—3/32 2.0940 53.18 3—19/32 3.5940 91.21 18 18.000 457.20
2—1/8 2.1250 53.97 — 3.6220 92.00 19 19.000 482.60
— 2.1260 54.00 3—5/8 3.6250 92.07 — 19.635 500.00
2—5/32 2.1560 54.77 3—21/32 3.6560 92.87 20 20.000 508.00

Table 1-23-4. Fractions, decimals, and millimeters.
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No. Square Cube Square root Cube root Circumference Area
1 1 1 1.0000 1.0000 3.1416 0.7854
2 4 8 1.4142 1.2599 6.2832 3.1416
3 9 27 1.7321 1.4422 9.4248 7.0686
4 16 64 2.0000 1.5874 12.5664 12.5664
5 25 125 2.2361 1.7100 15.7080 19.635
6 36 216 2.4495 1.8171 18.850 28.274
7 49 343 2.6458 1.9129 21.991 38.485
8 64 512 2.8284 2.0000 25.133 50.266
9 81 729 3.0000 2.0801 28.274 63.617
10 100 1,000 3.1623 2.1544 31.416 78.540
11 121 1,331 3.3166 2.2240 34.558 95.033
12 144 1,728 3.4641 2.2894 37.699 113.10
13 169 2,197 3.6056 2.3513 40.841 132.73
14 196 2,744 3.7417 2.4101 43.982 153.94
15 225 3,375 3.8730 2.4662 47.124 176.72
16 256 4,096 4.0000 2.5198 50.266 201.06
17 289 4,913 4.1231 2.5713 53.407 226.98
18 324 5,832 4.2426 2.6207 56.549 254.47
19 361 6,859 4.3589 2.6684 59.690 283.53
20 400 8,000 4.4721 2.7144 62.832 314.16
21 441 9,261 4.5826 2.7589 65.974 346.36
22 484 10,648 4.6904 2.8020 69.115 380.13
23 529 12,167 4.7958 2.8439 72.257 415.48
24 576 13,824 4.8990 2.8845 75.398 452.39
25 625 15,625 5.0000 2.9240 78.540 490.88
26 676 17,576 5.0990 2.9625 81.682 530.93
27 729 19,683 5.1962 3.0000 84.823 572.56
28 784 21,952 5.2915 3.0366 87.965 615.75
29 841 24,389 5.3852 3.0723 91.106 660.52
30 900 27,000 5.4772 3.1072 94.248 706.86
31 961 29,791 5.5678 3.1414 97.390 754.77
32 1,024 32,768 5.6569 3.1748 100.53 804.25
33 1,089 35,937 5.7446 3.2075 103.67 855.30
34 1,156 39,304 5.8310 3.2396 106.81 907.92
35 1,225 42,875 5.9161 3.2711 109.96 962.12
36 1,296 46,656 6.0000 3.3019 113.10 1,017.88
37 1,369 50,653 6.0828 3.3322 116.24 1,075.21
38 1,444 54,872 6.1644 3.3620 119.38 1,134.12
39 1,521 59,319 6.2450 3.3912 122.52 1,194.59
40 1,600 64,000 6.3246 3.4200 125.66 1,256.64
41 1,681 68,921 6.4031 3.4482 128.81 1,320.26
42 1,764 74,088 6.4807 3.4760 131.95 1,385.45
43 1,849 79,507 6.5574 3.5034 135.09 1,452.20
44 1,936 85,184 6.6332 3.5303 138.23 1,520.53
45 2,025 91,125 6.7082 3.5569 141.37 1,590.44
46 2,116 97,336 6.7823 3.5830 144.51 1,661.91
47 2,209 103,823 6.8557 3.6088 147.66 1,734.95
48 2,304 110,592 6.9282 3.6342 150.80 1,809.56
49 2,401 117,649 7.0000 3.6593 153.94 1,885.75
50 2,500 125,000 7.0711 3.6840 157.08 1,963.50
51 2,601 132,651 7.1414 3.7084 160.22 2,042.83
52 2,704 140,608 7.2111 3.7325 163.36 2,123.72
53 2,809 148,877 7.2801 3.7563 166.50 2,206.19
54 2,916 157,464 7.3485 3.7798 169.65 2,290.23
55 3,025 166,375 7.4162 3.8030 172.79 2,375.84
56 3,136 175,616 7.4833 3.8259 175.93 2,463.01

Table 1-24-1. Functions of numbers.
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No. Square Cube Square root Cube root Circumference Area
57 3,249 185,193 7.5498 3.8485 179.07 2,551.76
58 3,364 195,112 7.6158 3.8709 182.21 2,642.09
59 3,481 205,379 7.6811 3.8930 185.35 2,733.98
60 3,600 216,000 7.7460 3.9149 188.50 2,827.44
61 3,721 226,981 7.8102 3.9365 191.64 2,922.47
62 3,844 238,328 7.8740 3.9579 194.78 3,019.08
63 3,969 250,047 7.9373 3.9791 197.92 3,117.25
64 4,096 262,144 8.0000 4.0000 201.06 3,216.99
65 4,225 274,625 8.0623 4.0207 204.20 3,318.32
66 4,356 287,496 8.1240 4.0412 207.35 3,421.20
67 4,489 300,763 8.1854 4.0615 210.49 3,525.66
68 4,624 314,432 8.2462 4.0817 231.63 3,631.69
69 4,761 328,509 8.3066 4.1016 216.77 3,739.29
70 4,900 343,000 8.3666 4.1213 219.91 3,848.46
71 5,041 357,911 8.4261 4.1408 223.05 3,959.20
72 5,184 373,248 8.4853 4.1602 226.20 4,071.51
73 5,329 389,017 8.5440 4.1793 229.34 4,185.40
74 5,476 405,224 8.6023 4.1983 232.48 4,300.85
75 5,625 421,875 8.6603 4.2172 235.62 4,417.88
76 5,776 438,976 8.7178 4.2358 238.76 4,536.47
77 5,929 456,533 8.7750 4.2543 241.90 4,656.64
78 6,084 474,552 8.8318 4.2727 245.05 4,778.37
79 6,241 493,039 8.8882 4.2908 248.19 4,901.68
80 6,400 512,000 8.9443 4.3089 251.33 5,026.56
81 6,561 531,441 9.0000 4.3267 254.47 5,153.01
82 6,724 551,368 9.0554 4.3445 257.61 5,281.03
83 6,889 571,787 9.1104 4.3621 260.75 5,410.62
84 7,056 592,704 9.1652 4.3795 263.89 5,541.78
85 7,225 614,125 9.2195 4.3968 267.04 5,674.52
86 7,396 636,056 9.2736 4.4140 270.18 5,808.82
87 7,569 658,503 9.3274 4.4310 273.32 5,944.69
88 7,744 681,472 9.3808 4.4480 276.46 6,082.14
89 7,921 704,969 9.4340 4.4647 279.60 6,221.15
90 8,100 729,000 9.4868 4.4814 282.74 6,361.74
91 8,281 753,571 9.5394 4.4979 285.89 6,503.90
92 8,464 778,688 9.5917 4.5144 289.03 6,647.63
93 8,649 804,357 9.6437 4.5307 292.17 6,792.92
94 8,836 830,584 9.6954 4.5468 295.31 6,939.79
95 9,025 857,375 9.7468 4.5629 298.45 7,088.24
96 9,216 884,736 9.7980 4.5789 301.59 7,238.25
97 9,409 912,673 9.8489 4.5947 304.74 7,389.83
98 9,604 941,192 9.8995 4.6104 307.88 7,542.98
99 9,801 970,299 9.9499 4.6261 311.02 7,697.71
100 10,000 1,000,000 10.0000 4.6416 314.16 7,854.00

Table 1-24-1. Functions of numbers, continued.
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Blueprints
and Drawings

Section 1

Purpose and Function
of Aircraft Drawings

The exchange of ideas is essential to every-
one, regardless of their vocation or position.
Usually, this exchange is carried on by the
oral or written word; but under some condi-
tions the use of these alone is impractical.
Industry discovered that it could not depend
entirely upon written or spoken words for the
exchange of ideas because misunderstanding
and misinterpretation arose frequently.

Pictures were the earliest form of language
used to communicate information and ideas.
These pictures were drawn with lines and
symbols. Drawing has since evolved along two
different lines, artistic and technical. Artistic
drawings use lines and forms in the creative
expression of cultural things, whereas techni-
cal drawings use lines and symbols to express
technical ideas and thoughts.

To express in written terms the informa-
tion required to construct even a simple item
would end in disaster. In the design and con-
struction of complex items, drawings are the
most accurate way to communicate the infor-
mation. Each engineering field has made use
of drawings. Each field uses standards in the
production of drawings, but each has also
evolved different symbols.

Drafting is the drawing of an engineering
picture of an object. The drawing is a graphic
presentation of a real thing. These pictures can
be understood by anyone who knows the lan-
guage of drafting. For this reason drafting is

Learning
Objectives

REVIEW
« Types of aircraft
drawings

+Uses of microfilm
and microfiche

eLines and their
meanings

«Care of drafting
instruments

DESCRIBE

*Methods of
illustrating objects

*The components of
aircraft production
drawings
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*Dimensioning
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Figure 2-1-2. Assembly drawing.

referred to as the universal language (see the
subsection Lines and Their Meanings, later in
this chapter).

Aircraft drawings originate in the drafting sec-
tion of the engineering office. These drawings
are referred to as engineering drawings. There
are many types of engineering drawings. Some
of these types of drawings are discussed in the
following paragraphs.

Prints are copies of the original engineering
drawing, and are the link between the aircraft
designers, manufacturers, and the mechanics
that repair and maintain the aircraft. A printis
a copy of the original working drawing for an
aircraft part or group of parts, or for a design
of a system or group of systems. It is made by
placing a tracing of the drawing over a sheet
of chemically treated paper and exposing it to
a strong light for a short period of time. When
the exposed paper is developed, it turns blue
where the light has penetrated the transparent
tracing. The inked lines of the tracing, having
blocked out the light, show as white lines on
a blue background. Other types of sensitized
paper have been developed; prints may have a
white background with colored lines or a col-
ored background with white lines.

Because copies of prints can shrink, never
make a layout directly from the drawing. Use
the measurements.

With theintroductionof Computer Aided Design
(CAD), many engineering drawings today exist
only in the computer. Many advanced designs
are entirely CAD-drawn from inception to pro-
duction.

Types of Drawings

Working drawings may be divided into three
classes: detail drawings, assembly drawings,
and installation drawings. Other types of
drawings include sectional drawings, exploded
views, block diagrams, logic flow charts, elec-
trical wiring diagrams, schematic diagrams,
and pictorial electrical diagrams.

Detail drawing. A detail drawing supplies
complete information for the construction of a
single part. The drawing shows the size, shape,
material, method of manufacture, dimensions,
tolerances, and/or specifications for material,
finishes, and heat treating. Sectional views,
auxiliary views, or enlarged views may be
added for clearer understanding. Detail draw-
ings may be either single-detail or multi-detail
drawings. The single-detail drawing, Figure
2-1-1, shows the part and perhaps one detailed
view of that part that emphasizes or helps to
describe size, shape, or any of the other details
previously mentioned. The multi-detail draw-
ing is essentially the same as the single detail
drawing except that more than one detailed
view may be used to describe or emphasize the
previously mentioned details.

Assembly drawing. An assembly drawing
depicts the assembled relationships between
two or more parts, a combination of parts, or a
group of assemblies to form a larger assembly.
Assembly drawings vary in the amount and



Blueprints and Drawings | 2-3

View not sectioned

Figure 2-1-3. Sectional drawings.

type of information given depending on what
the drawing depicts. The function of an assem-
bly drawing is to show an item in its completed
shape, to indicate relationships between parts
or components, and to show the part number
for the parts. Assembly drawings may also
show overall dimensions capacities, informa-
tion for assembly, and operating instructions
(Figure 2-1-2).

Installation drawing. An installation draw-
ing shows the general arrangement of the parts
or their position and information to install the
items. The information shown on an installa-
tion drawing is that needed to complete the
installation. Depending on the type of installa-
tion, either electrical or mechanical, the infor-
mation may vary. Generally, the information
will give mounting directions, location and
dimensions, and attaching hardware.

Sectional drawings. Sectional drawings are
usually referred to as sectional views and are
used to show internal detail more clearly than
is possible in any other type of drawing. There
are several types of view drawings available
depending on what is to be shown. A cutting
plane line is used to indicate what surface and
where the surface is cut. The portion that is cut
is indicated by the use of section lines. A view-
ing plane line is used to indicate what surface
is being viewed and the direction from which
it will be viewed.

A full section view indicates the object is cut
or viewed as if it were cut in half (Figure 2-1-
3). The cutting plane line passes completely
through the object. The viewing plane line
does not pass through the object.

In a half section, the cutting plane extends only
halfway across the object, leaving the other
half of the object as an exterior view. Half sec-

View in full section

tions are used to advantage with symmetrical
objects to show both the interior and exterior.

Exploded views. This type of drawing shows
the relationship of parts and can be help-
ful in assembling components (Figure 2-1-4).
Exploded views are also used to illustrate
parts manuals.

Block diagrams. Block diagrams are used to
show the relationship and function of each
item in the diagram. This type of diagram can
be used in electrical, electronic, or mechanical

Figure 2-1-4. Exploded view.
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+28V applications. An electrical or electronic block
Aircraft diagram does not show electrical connections
power (Figure 2-1-5). Block diagrams are so called

because each unit is identified by a block or
square. Other types of symbols may also be
used in block diagrams.

Drivers Keep

and e Switch

Logic flow charts. The logic flow chart rep-
panel

resents the mechanical, electrical, or electronic
action without necessarily expressing the
construction or engineering information. An
understanding of logic symbols is needed to
interpret logic flow charts. Figure 2-1-6 shows
a logic flow chart.

displays circuit

Memory

Electrical wiring diagram. Electrical wiring
diagrams are divided into four types: single-
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to analog phase

converter shifter
Read
sensor
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l No
RNAV
Vector Stop
Figure 2-1-5. Block diagram. Figure 2-1-6. Logic flow chart.
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Figure 2-1-7. Single-line diagram.




line, schematic or elementary, connection or
wiring, and interconnect. They will frequently
show wire sizes.

A single-line diagram shows the path of an elec-
trical circuit or system and components using
graphic symbols as shown in Figure 2-1-7.

The connection or wiring diagram shows the
general arrangement of parts and other infor-
mation needed to trace or make internal or
external connections (Figure 2-1-8).

The interconnect diagram shows only external
connections between units (Figure 2-1-9).

Schematic diagrams, like installation diagrams,
are used extensively in aircraft manuals and in
the troubleshooting of aircraft systems.

Pictorial electrical diagrams. A pictorial
electrical wiring diagram shows pictorial
sketches of the parts and the electrical con-
nections between them. This type of diagram
can be used for learning system operation and
troubleshooting. It does not show location of
equipment (Figure 2-1-10).

Schematic diagrams. An electrical or elec-
tronic elementary schematic diagram indi-
cates the electrical connection and function
of electrical or electronic circuits. This type
of diagram aids in the tracing, function, and
troubleshooting of the circuit without regard
to size, shape, or location of the components.

A mechanical schematic diagram depicts the
relationship of parts, components, or flow of
fluids in a system. For ease of reading and trac-
ing the flow, each component is identified by
name, and its location within the system can
be ascertained by noting the lines that lead
into and out of the unit.

CAD drawings. CAD software permits the

user to switch between multiple drawings
and diagrams within a single computer file.

[ o

| A p
: A ——— TR84A20 115V AC ————— A

] ]
| ! B TR85A20 115V AC —— B !
] Amplifier
| C ——— TR86A20 28V DC ——— C

] ]
. ' D —— TR87A20 +28V DC —— D |
] J 1\
[ B\ on /"

Figure 2-1-9. Interconnect diagram.
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Composite views, which contain elements of
multiple types of drawings are also available
in some cases.

Methods of Illustrating Objects

The method used to illustrate an object depends
on what is to be shown. Each type of drawing
has advantages and disadvantages in present-
ing the desired information.

Orthographic projection drawings. In order
to show the exact size and shape of all the parts
of complex objects, a number of views are nec-
essary. This is the system used in orthographic
projection.

o ©

51-3 51-2 51-1
5 1 5 1 5 1
6920 69 2N 6920
ol O —O —0
O\\ \ O\\

Figure 2-1-8. Connection or wiring diagram.
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Figure 2-1-10. Pictorial electrical diagram.



Figure 2-1-11. Orthographic projection.

In orthographic projection, there are six pos-
sible views of an object because all objects have
six sides front, top, bottom, rear, right side, and
left side. Figure 2-1-11A shows an object placed
in a transparent box, hinged at the edges. The
projections on the sides of the box are the views
as seen looking straight at the object through
each side. If the outlines of the object are drawn
on each surface and the box opened as shown
in Figure 2-1-11B, then laid flat as shown in
Figure 2-1-11C, the result is a six-view ortho-
graphic projection.

It is seldom necessary to show all six views to
portray an object clearly; therefore, only those
views necessary to illustrate the required
characteristics of the object are drawn. One-
view, two-view, and three-view drawings are
the most common. Regardless of the number
of views used, the arrangement is generally,
as shown in Figure 2-1-11, with the front view
being the principal one. If the right-side view
is shown, it will be to the right of the front
view. If the left-side view is shown, it will
be to the left of the front view. The top and
bottom views, if included, will be shown in
their respective positions relative to the front
view. Should a rear view be necessary, it is
customary to place it to the left of the left-
hand view.

One-view drawings are commonly used for
objects of uniform thickness, such as gaskets,
shims, and plates. A dimensional note gives the
thickness as shown in Figure 2-1-12. One-view
drawings are also commonly used for cylindri-
cal, spherical, or square parts, if all the neces-
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Figure 2-1-12. One-view drawing.

sary dimensions can be properly shown in one
view.

When space is limited and two views must be
shown, symmetrical objects are often repre-
sented by half views. (Figure 2-1-13).

Isometric drawings. In an isometric drawing,
all the lines that are parallel on the part being
drawn are parallel on the drawing. Vertical lines
on the part are shown vertical on the drawing,
but horizontal lines are drawn at a 30° angle to
the horizontal. This type of drawing cannot be
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Figure 2-1-13. Symmetrical object with exterior
half view.

Figure 2-1-14. Isometric drawing.

used to express complex parts. It may be used to
clarify orthographic drawings.

Unlike orthographic projection drawings which
present three-dimensional objects on a flat
plane with a number of views, isometric draw-
ings present a three-dimensional object on a flat
plane approximately the same way the eye views
it (Figure 2-1-14). The three dimensions shown
on an isometric drawing are height, width, and
depth. They are also the three isometric axes
and their point of intersection is called the point
of origin. The angle between these axes is 120°,

Horizon Vanishing
line point right

1

N -—

Figure 2-1-17. Perspective drawing.

1
45° /2 Scale

< 1/2 Scale —>‘

Figure 2-1-15. Cabinet drawing of a cube.

Full scale

Figure 2-1-16. Cavalier oblique drawing.

as shown in Figure 2-1-14. Isometric drawings
show external features only.

Oblique drawings. The front face of an oblique
drawing is shown in true size and shape as if it
were an orthographic drawing. The horizontal
lines may be drawn at 30° 45° or 60° angles to
the horizontal. The oblique sides are drawn to
any scale to give a realistic depth.

Cabinet drawings. A cabinet drawing is a
type of oblique drawing. It gets its name from
drawings used for cabinet work. Cabinet draw-
ings are drawn with the oblique side at a 30° or
45° angle to the horizontal and use 1/2 scale of
the front view (Figure 2-1-15).

Cavalier drawings. The cavalier drawing uses
the same scale of the front view on the oblique
side lines. These lines are set at a 45° angle to
the horizontal and create a distorted picture of
the object’s true proportions (Figure 2-1-16).

Perspective drawings. The perspective draw-
ing is the truest representation of an object.
This method of drawing allows objects to
appear proportionally smaller the further the
distance, just as they do when viewed.

A perspective drawing is not used in the manu-
facture or repair of aircraft. This type of draw-
ing may be used effectively for technical illus-
trations (Figure 2-1-17).



CAD drawings. Computer Aided Design pro-
grams allow the user to select any one of many
types of drawings for viewing on the computer
screen or printout. They also often allow the
user to freely rotate an object and obtain an iso-
metric view or drawing from almost any angle.

Lines and Their Meanings

Every drawing is composed of lines. Lines
mark the boundaries, edges, and intersections
of surfaces. Lines are used to show dimensions
and hidden surfaces, and to indicate centers.
Obviously, if the same kind of line is used to
show all of these things, a drawing becomes a
meaningless collection of lines. For this reason,
various kinds of standardized lines are used on
aircraft drawings.

Most drawings use three widths or intensities
of lines; thin, medium, or thick. These lines
vary somewhat on different drawings, but
there will always be a noticeable difference
between a thin and thick line, with the width
of the medium line somewhere between the
two.

Visible lines. The visible line is used for all
lines on the drawing representing visible lines
on the object (Figure 2-1-18A).

Hidden lines. Hidden lines indicate invis-
ible edges or contours. Hidden lines consist of
short, evenly spaced dashes and are frequently
referred to as dash lines (Figure 2-1-18B).

Center lines. Center lines are made up of alter-
nate long and short dashes. They indicate the
center of an object or part of an object. Where
center lines cross, the short dashes intersect
symmetrically. In the case of very small cir-
cles, the center lines may be shown unbroken
(Figure 2-1-18C). Center lines may also be used
to indicate the travel of a center and as exten-
sion lines.

Dimension lines. A dimension line (Figure
2-1-18D) is a light solid line, broken at the mid-
point for insertion of measurement indications,
and having opposite pointing arrowheads at
each end to show origin and termination of
a measurement. Dimension lines are gener-
ally parallel to the line for which the dimen-
sion is given, and are usually placed outside
the outline of the object and between views if
more than one view is shown. Dimension lines
should not contact the outline of the object.

Extension lines. Extension lines are thin lines
used to move the dimension from the surface of
the object to a point where the dimension will
not interfere with the other lines. Extension
lines should not touch the outline of the object
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Cutting
plane
line

but may cross object lines. They should not
begin or end on object lines (Figure 2-1-19).

Cutting plane lines. Cutting plane lines indi-
cate the plane in which a sectional view of the
object is taken. In Figure 2-1-19, plane line A-A

Section
A-A

Break line

indicates the plane in which section A-A is
taken (Figure 2-1-18E).

Phantom lines. Phantom lines indicate the
alternate position of parts of the object or the
relative position of a missing part. Phantom
lines are composed of one long and two short
evenly spaced dashes (Figure 2-1-18F).

Break lines. Break lines indicate that a por-
tion of the object is not shown on the drawing.
Short breaks are made by solid, freehand lines
(Figure 2-1-18G). For long breaks, solid ruled
lines with zigzags are used (Figure 2-1-18H).
Shafts, rods, tubes, and other such parts, which
have a portion of their length broken out, have
the ends of the break drawn as indicated in
Figure 2-1-19.

Leader lines. Leaders are solid lines with
one arrowhead and indicate a part or portion
to which a note, number, or other reference
applies (Figure 2-1-18I).

Sectioning lines. Sectioning lines are gener-
ally thin lines, and are sometimes referred to
as cross-hatching. Section lines serve two pur-
poses. The lines indicate the surface of an object
that has been cut to make it stand out from the
rest of the object. Section lines also indicate
the type of material from which the object is
made. The cast iron symbol is commonly used
in drawings depicting all types of metals. The
material description is then listed in the Bill of
Materials block. Examples are shown at the top
of Figure 2-1-18.



Removed sections. A removed section of a
drawing is used to illustrate a particular part of
a drawing. It is placed to the side of the draw-
ing and shows pertinent details. These sections
are normally drawn to a larger scale than the
main view to provide increased detail.

Lettering. Good lettering gives a sketch a pro-
fessional look. Sloppy lettering will make a good
sketch look bad. Good lettering is essential for
easy reading; therefore, it is important that you
develop skill in lettering. Lettering is drawn,
not written, so the standard forms and strokes
can be learned through practice. Fancy, ornate
lettering does not belong on a technical sketch.

The proportion of one letter to another and the
order in which the strokes are drawn are as
important as the shape of the individual letters.
The proportion of the letters gives them style and
character, and the order in which the strokes are
drawn affects the ease and rapidity of lettering.

Numbers. The legibility of numbers and frac-
tions on technical sketches is important. If the
numbers on the sketch are hard to read, the
wrong information may be communicated and
time and material could be wasted.

Fractions. Fractions are always drawn with
horizontal division lines. This will lessen the
chance of misinterpretation with other num-
bers. Each figure is two-thirds the height of a
whole number. To prevent the figures of a frac-
tion from blending with the horizontal line
when drawing fractions, leave space above and
below the line. Lightly draw in the guide lines
and erase them when you complete each set.

Dimensioning

Tolerance. Tolerance is the acceptable varia-
tion from the specific dimension given on a
print or drawing. A tolerance is usually given
in three decimals (0.010). The tolerance may be
shown by one of the following ways:

* As a specific tolerance for a specified
dimension.

* As a general tolerance note that indicates
the tolerance for all dimensions not covered
by specific tolerances. (This tolerance is
usually found in the title block). Tolerances
are shown on prints or drawings in two dif-
ferent ways: either by limit dimensioning or
by plus and minus dimensioning,

In limit dimensioning, Figure 2-1-20, the
higher limit is placed above the lower
limit. If the tolerance is expressed on a
single line, the lower limit is expressed
first, followed by the higher limit. A
dash will separate the two limits.
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Figure 2-1-21. Unilateral tolerancing.
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Figure 2-1-22. Size and location of dimension.

¢ Plus and minus dimensioning indicates
the specific size dimension followed by
the plus (high limit) and the minus (low
limit). The plus limit is shown above the
minus limit as shown in Figure 2-1-21.
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Figure 2-1-23. Dimensioning holes.
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Figure 2-1-24. Engineering drawing format.

¢ Plus and minus tolerancing may be
expressed as either bilateral or unilateral
tolerances.

e In bilateral tolerancing, the plus and
minus limits are generally equal, but
designs may dictate unequal values as
shown in Figure 2-1-20.

e Unilateral tolerancing is used when only
a high or low limit of a tolerance is used,
Figure 2-1-21.

Dimension lines. Dimensioning on a draw-
ing or print is indicated by the use of extension
lines, leader lines, dimension lines, figures,
notes, or symbols. Dimensions on a drawing
indicate length, angles, diameters, radius, or
locations (Figure 2-1-22).

In dimensioning distances between holes in an
object, dimensions are usually given from cen-
ter to center rather than from outside to outside
of the holes. When a number of holes of vari-
ous sizes are shown, the desired diameters are
given on a leader followed by notes indicating
the machining operations for each hole. If a
part is to have three holes of equal size, equally
spaced, this information is given. For precision
work, sizes are given in decimals. Diameters
and depths are given for counterbored holes.
For countersunk holes, the angle of counter-
sinking and the diameters are given. Study the
examples shown in Figure 2-1-23.

The dimensions given for fits signify the
amount of clearance allowed between mov-
ing parts. A positive allowance is indicated for
a part that is to slide or revolve upon another
part. A negative allowance is one given for a
force fit. Whenever possible, the tolerance and
allowances for desired fits conform to those
set up in the American Standard for Tolerances,
Allowances, and Gages for Metal Fits. The classes
of fits specified in the standard may be indi-
cated on assembly drawings.

Aircraft Production Drawings

From the manufacturing design of an aircraft
or part to the assembly, installation, and repair
will require several types of engineering draw-
ings. The engineering drawing is a document
that pictorially shows the physical shape, func-
tion, or other information the designer wants to
present.

To show all these requirements, it will normally
take a number of different types of engineering
drawings. As a rule, the combination of detail,
assembly, installation, and diagrammatic draw-
ings will provide the necessary information for
a mechanic to complete the job. Diagrammatic is
the description for usage of various diagrams.



It is plural and refers to no specific diagram, but
any diagrams that may be required (used). The
format for engineering drawings is shown in
Figure 2-1-24.

Title blocks. Every print must have some
means of identification. This is provided by a
title block (Figure 2-1-25). The title block con-
sists of a drawing number and certain other
data concerning the drawing and the object
it represents. This information is grouped in
a prominent place on the print, usually in the
lower right-hand corner. Sometimes the title
block is in the form of a strip extending almost
the entire distance across the bottom of the
sheet.

Although title blocks do not follow a standard
form insofar as layout is concerned, all of them
will present essentially the following informa-
tion:

e A drawing number to identify the print
for filing purposes and to prevent confus-
ing it with any other print

e The name of the part or assembly
e The scale to which it is drawn

e The date

e The name of the firm

* The name of the draftsperson, the checker,
and the person approving the drawing

Size. The universal numbering system pro-
vides a means of identifying standard drawing
sizes. In the universal numbering system, each
drawing number consists of six or seven digits.
The first digitis always A, B, C, D, E, or ] (Figure
2-1-26), and indicates the size of the drawing.
The remaining digits identify the drawing.

Many firms have modified this basic system to
conform to their particular needs. Letters may
be used instead of numbers. The letter or num-
ber depicting the standard drawing size may
be prefixed to the number, separated from it
by a dash. Other numbering systems provide
a separate box preceding the drawing number
for the drawing size identifier. In other modifi-
cations of this system, the part number of the
depicted assembly is assigned as the drawing
number.

Drawing numbers. All prints are identified
by a number that appears in a number block in
the lower right-hand corner of the title block. It
may also be shown in other places, such as near
the top border line in the upper right-hand cor-
ner or on the reverse side of the print at both
ends, so that the number will show when the
print is folded or rolled. The purpose of the
number is for quick identification of a print.
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Figure 2-1-25. Title block.

Size A B C J
Length 1" | 177 | 22" Indefinite (roll)
Width 81/2 | 11”7 | 277 17, 22, 25, 50, 34, and 36 inches

Figure 2-1-26. Standard blueprint paper sizes.

If a print has more than one sheet and each
sheet has the same number, this information
is included in the number block, indicating the
sheet number and the number of sheets in the
series.

Reference numbers that appear in the title block
refer a person to the numbers of other prints.
When more than one detail is shown on a draw-
ing, dash numbers are used. Both parts would
have the same drawing number plus an individ-
ual number, such as 40267-1 and 40267-2.

In addition to appearing in the title block,
dash numbers may appear on the face of the
drawing near the parts they identify. Dash
numbers are also used to identify right-hand
and left-hand parts shown in the drawing. The
right-hand part is called for in the title block.
Above the title block will be found a nota-
tion such as “470204-1LH shown, 470204-2RH
opposite”. Both parts carry the same number,
but the part called for is distinguished by a
dash number. Some prints have odd num-
bers for left-hand parts and even numbers for
right-hand parts.

Scale. The scale that is printed on the blueprint
indicates the size of the part on the drawing as
compared to the size of the actual part.

A scale may be indicated as 1 inch equals 2
inches; 1 inch equals 12 inches; 3/8 inch equals
1 foot, or full size, one-half size, or one-quar-
ter size. The scale 1 inch = 2 inches indicates
that a I-inch line on the drawing is actually 2
inches on the object. When the scale is shown
as 3 inches = 1 inch, the line on the drawing is 3
inches long and the line on the object is 1 inch
long. This type of scale would be used when
drawing a very small object.
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BILL OF MATERIALS
ITEM PART NO. REQUIRED SOURCE
CONNECTOR | UG-21D/U Z (%%
Figure 2-1-27. A typical bill of materials.
2 CHANGED PARTNO. 5 EO.1 05/02/06 BK.
/ REVISED DIMENSIONS JLM, 07/01/06 EXP.
NO. REVISION AUTH. DATE SIGN

Figure 2-1-28. Revision block.

Never measure a drawing and use that dimen-
sion because the drawing may have been
enlarged or reduced.

Page. The title block contains a place to num-
ber the pages of a drawing. If a drawing has
more than one page, it will be indicated by 1
of 3 on the first page, 2 of 3 on the second page,
and 3 of 3 on the third page. When drawings
are in book form, this number may be used to
indicate the page number of the book.

Responsibility. Within the title block is a
space for the date and initials or signatures of
the designer, draftsperson, checker, and super-
visor. Each drawing may not have all of these
positions, but each drawing will indicate the
responsibility for the drawing.

Standards. There are standards by which all
drawings are made. The purpose of these stan-
dards is for the uniformity of drawings among
the manufacturers. The standards deal with all
aspects of the drawing. These standards are set
by organizations with an interest in producing
uniform meaning of the information presented
on the drawings.

Some of the organizations that set standards
for drawings are the Department of Defense
(DOD), Society of Automotive Engineers
(SAE), American Welding Society (AWS), and
the American National Standards Institute
(ANSI).

Bill of materials. A list of the materials and
parts necessary for the fabrication or assembly
of a component or system is often included on
the drawing. The list usually will be in ruled
columns in which are listed the part number,
name of the part, material from which the part
is to be constructed, the quantity required, and

the source of the part or material. A typical bill
of materials is shown in Figure 2-1-27. On draw-
ings that do not have a bill of materials, the
data may be indicated directly on the drawing.

On assembly drawings, each item is identified
by a number in a circle or square. An arrow
connecting the number with the item assists in
locating it in the bill of materials.

Revision block. Revisions to a drawing are
necessitated by changes in dimensions, design,
or materials. The changes are usually listed in
ruled columns either adjacent to the title block
or at one corner of the drawing. All changes to
approved drawings must be carefully noted on
all existing prints of the drawing.

When drawings contain such corrections,
attention is directed to the changes by lettering
or numbering them and listing those changes
against the symbol in a revision block (Figure
2-1-28). The revision block contains the identifi-
cation symbol, the date, the nature of the revi-
sion, the authority for the change, and the name
of the draftsperson who made the change.

To distinguish the corrected drawing from its
previous version, many firms are including, as
part of the title block, a space for entering the
appropriate symbol to designate that the draw-
ing has been changed or revised.

Zone numbers. Zone numbers on drawings
are similar to the numbers and letters printed
on the borders of a map. They are there to help
locate a particular point. To find a point, men-
tally draw horizontal and vertical lines from
the letters and numerals specified; the point
where these lines would intersect is the area
sought.

Use the same method to locate parts, sec-
tions, or views on large drawings, particularly
assembly drawings. Parts numbered in the title
block can be located on the drawing by finding
the numbers in squares along the lower border.
Zone numbers read from right to left.

Station numbers. A numbering system is
used in the design and manufacture of aircraft
in order to identify any given point within the
aircraft to within one cubic inch. This system
utilizes fuselage stations, waterlines, buttock
lines (commonly called butt lines), and wing sta-
tions. While each is described in detail in the fol-
lowing paragraphs, each one consists of a set of
imaginary lines placed one inch apart, parallel
to each other, and measured from a 0, or refer-
ence datum line. In addition to using this sta-
tion numbering system on drawings and in the
design and manufacture of aircraft, once pro-
duced, the weight and balance of the aircraft is
determined by utilizing these imaginary lines.



Fuselage stations. Fuselage stations (FS) are
indicated in inches from the datum as set by
the engineer. The datum can be at the nose of
the aircraft, in front of the aircraft, aft of the
nose of the aircraft, or any place the engineer
designates. If the datum is aft of the nose of
the aircraft, any station towards the nose of the
aircraft will be a negative fuselage station. This
will be indicated by a minus sign in front of the
fuselage station number. For example, FS-15
indicates the station is 15 inches in front of the
fuselage datum. When no sign precedes a num-
ber, it is positive and indicates that the fuselage
station is between the fuselage datum and the
tail of the aircraft.

Waterline stations. Waterline stations (WL)
indicate, in inches, the vertical distance from
the waterline datum to a location on the air-
craft. The waterline datum has no set location.
This datum may be a point above the ground,
the ground itself, or below the ground. If the
location of the datum allows any part of the air-
craft to fall below the datum, those waterline
stations will be negative.

Buttock line stations. Buttock line (BL) sta-
tions are measured ininches from the centerline
of the aircraft. This is the only datum that is
the same on all aircraft. Buttock line stations
are measured to the left and right of the datum
looking forward. This is indicated by right but-
tock line (RBL) and left buttock line (LBL). The
right buttock line is given a positive value from
0 (zero) and the left buttock line is given a nega-
tive value from 0 (zero).

Some manufacturers use buttock line stations
to indicate positions on the wings. Other man-
ufacturers use wing stations.

Wing stations. Wing stations (WS) are mea-
sured in inches from the datum, which is the
centerline of the aircraft. The wing stations are
indicated by left or right. LWS indicates a left-
wing station and RWS would indicate a right-
wing station. When wing stations and buttock
stations are used together, be careful not to
confuse the numbers. Wing stations indicate
positions on the wing structure only, not posi-
tions on the fuselage.

Section 2

Applied Geometry

To sketch an object or an idea, it may become
necessary to draw geometric shapes, parallel
lines, arcs, angles, or to bisect or divide lines
into equal sections in order to communicate the
needed information.
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Figure 2-2-1. Bisecting a line.

Only a few simple tools are needed to perform
many useful drawing functions. A pencil com-
pass and ruler are all that is needed.

Basics

Find the center of a line. To bisect a straight
line (Figure 2-2-1) set the pencil compass
(Figure 2-2-2) to a radius that is greater than
half the line’s length. Lightly swing an arc from
both ends of the line. Connect the points where
the arcs cross. The line will intersect the original
line at 90° and divide the line in half. Erase the
light lines.

Draw a line perpendicular to a baseline. To
draw a line perpendicular from a point to a
baseline, open the compass to a greater length
than from the point to the baseline, then
swing an arc across the baseline. Using the
two points where the arc crosses the baseline
as pivot points, swing an arc from each point
on the opposite side of the baseline from the
point where the perpendicular line is to start.
Connect the point where these two arcs cross
and the point where the perpendicular line is
to start and draw a line from that point to the
baseline (Figure 2-2-3).

NS

Figure 2-2-3. Drawing a perpendicular to the baseline.

Figure 2-2-2.
Compass.
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Figure 2-2-4. Finding the center of a circle by the
square method.

Figure 2-2-5. Finding the center of a circle by the
bisection method.

Figure 2-2-6. Dividing a straight line into equal
lengths.

Find the center of a circle. One method of
finding the center of a circle is to draw a square
around the circle. Then draw diagonal lines
from the corners. Where the diagonal lines
cross is the center of the circle (Figure 2-2-4).

Another method is to draw two lines from one
point on the circle to opposite sides of the circle,
then bisect each line. Extend the bisecting if nec-
essary for the lines to cross. Where they cross is
the center of the circle (Figure 2-2-5).

Divide a line into an equal number of
parts. Divide a straight line into equal sec-
tions, Figure 2-2-6, by using a ruler that has
the correct divisions of measurement. Lightly
draw a diagonal line perpendicular below the
line to be divided. With the high numbered
end at the right side of the line, rotate the other
end until the zero or one crosses the perpen-
dicular line. Then mark the divisions on the
paper and draw parallel vertical lines to the
line being divided. The line will be divided
into equal segments.

Bisect an angle. To bisect an angle, Figure 2-2-
7, set the pencil compass to a radius at least half
the length of one of the lines that form the angle.
Swing a light arc that crosses both line AB and
BC. Then set the compass on these points (D, E)
and swing short arcs from both points toward
the opening of the angle. Connect point B
where the arcs cross. The angle is bisected.

Sketching

The aviation maintenance technician should
possess the ability to communicate in the form
of technical drawings. The technician should be
able to pass on ideas, information, and major
repair information in the form of technical
drawings. This does not mean that mainte-
nance technicians should be able to produce
sets of finished blueprints, but they should be
able to present clear, concise, factual, and accu-
rate information on the drawing.

Figure 2-2-7. Bisecting an angle.
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Figure 2-2-8. Freehand arcs and circles.

The individual style or method of drawing is
not important. The choice of presentation is up
to the technician. The only requirement is that
the drawing shows what the technician needs
and wants to show, as accurately as possible.

Almost all objects are composed of one or a
combination of six basic shapes: triangles,
circles, cubes, cylinders, cones, or spheres.
Therefore, being an artist, or having special tal-
ents is not necessary to produce good technical
sketches. Through practice and use of the basic
skills, anyone can develop their drawing skills
to an acceptable level.

Sketching techniques. To produce accurate
and usable drawings, there are a few basic
techniques that have to be learned, mastered,
and practiced. Drafting instruments are not
usually needed to draw a sketch, however, the
use of graph paper can make sketching easier.

Try to find a welllighted area with enough room
to place the drawing paper and drawing equip-
ment and to support your arms while working.
The proper support for the arms is needed to
help with the free and easy movement of wrists
and fingers. Do not hold the pencil so tightly
that your fingers become cramped.

When drawing lines, use short strokes. This
allows for control of the pencil’s movement,
and provides for better control of the pencil
point pressure on the paper. Make the pencil
marks light while drawing. When the outline is
finished, darken only the lines needed to show
the object and erase the rest. Lightly drawn
lines are easily erased.

Lines, arcs, and circles. To make clear, accu-
rate drawings, the sketcher must be able to
sketch lines, circles, and arcs that will intersect
lines. These types of lines are done best with
drawing tools. Because these tools may not be
available when a drawing needs to be made, it
is important to be able to sketch freehand.

Freehand lines. When drawing freehand lines,
it is a good practice to place dots lightly on the
paper as guides, with one at the beginning and

Radius

one at the end of the line. If the line is long, a few
intermediate dots may be used. Before drawing
the line, swing the drawing arm along the dots
to relax the arm and to get the feel for the length
of the line. With a well sharpened, soft lead
pencil, use a light touch and short strokes. The
short strokes will help make the line straighter,
and the light touch will make erasure easier if it
is needed. After drawing a line, examine it for
straightness and neatness. Additional practice
may be needed, but vertical and slanted lines
are drawn in the same way as horizontal lines.

Freehand arcs and circles. Drawing a free-
hand arc or circle requires no more skill than
straight lines, but it does require a bit more
practice. With the pencil held as shown in
Figure 2-2-8, the first or second finger (based on
the size desired) is used as a pivot point for the
arc. A circle is drawn as a series of connected
arcs. As with straight lines, use a light touch
and short strokes.

Repair Sketches

When the completion of a repair requires a
sketch of the repair, the sketch must be drawn
clearly and contain enough information so
someone could duplicate the repair.

To sketch a repair, follow the four steps that are
listed below and demonstrated in Figure 2-2-9:

1. Determine the views necessary to portray
the object.

2. Block in the views using light construction
lines.

3. Complete details, darken the object outline,
and sketch extension and dimension lines
and dimensions.

4. Complete the drawing with repair details,
such as the type of material used, the
types of fasteners, the location of the
repair, and any additional information
necessary to duplicate the repair. Also
include a title, date, and, if necessary, the
name of the sketcher.
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Figure 2-2-9. Sample repair sketch.

Graphic Presentation of
Information

Some of the technical information used in
maintaining aircraft can best be understood by
presenting the information in the form of charts
or graphs. They can be divided into those that
present technical relationships or mathemati-
cal relationships and those used to express
nontechnical data.

The type of chart or graph used depends on what
information s to be presented. Care must be taken
to select the right type of chart or graph, or the
information presented could be misinterpreted.
See examples in the Graphs and Charts section in
this book’s General Mathematics chapter.

A nomograph is used to show specific relation-
ships between three variables. When the values of
the two variables are known, set a ruler between
the two and the third variable can be found.

A rectilinear graph shows the relationship
between variables. One variable is shown on
the vertical and the other is on the horizontal.

Circular charts and bar charts are used to give
a visual presentation of the parts to the whole.
Care of Drafting Instruments

Good drawing instruments are expensive, preci-

sion tools. Reasonable care given to them during
use and storage will prolong their service life.

T-squares, triangles, and scales should not be
used, or placed, where their surfaces or edges
may be damaged. Use a drawing board only for
its intended purpose, and not in a manner that
will mar the working surface.

Compeasses, dividers, and pens will provide
better results with less annoyance if they are
correctly shaped and sharpened and are not
damaged by careless handling.

Store drawing instruments in a place where
they are not likely to be damaged by contact
with other tools or equipment. Protect compass
and divider points by inserting them into a
piece of soft rubber or similar material. Never
store ink pens without first cleaning and drying
them thoroughly.

Microfilm and Microfiche

Everyone in aviation has a space problem.
Space is needed to hangar aircraft, to perform
maintenance, for offices and storage, and the
need for space goes on and on. The aviation
technician who can honestly say that they don't
need additional space is rare indeed.

One of the objects that traditionally takes up
extraordinary amounts of space is the paperwork
necessary to conduct the business of aircraft
maintenance. This paperwork includes regula-
tions, instructions, drawings, and other records.
While regulations and records are addressed in
greater detail in other chapters of this book, it
is necessary to mention them at this time since
they too, along with drawings and instructions,
have been reduced to microfilm, microfiche, and
stored in computer data banks in order to allevi-
ate storage and space problems encountered by
everyone in aircraft maintenance.

Microfilm. The practice of recording draw-
ings, parts catalogs, and maintenance and
overhaul manuals on microfilm was intro-
duced a number of years ago. Microfilm is
regular 16-mm or 35-mm film. Since 35-mm
film is larger, it provides a better reproduc-
tion of drawings. Depending on the size of the
drawing to be reproduced, a varying number
of drawings can be photographed on one reel
of 35-mm film. To view or read drawings or
manuals on a reel of film, you need either a
portable 35-mm film projector or a microfilm
reader or viewer.

The advantage of microfilm is that several reels,
which represent perhaps hundreds of drawings,
require only a small amount of storage space.
Too, a person working on an aircraft may need to
refer to a specific dimension. They can place the
reel of microfilm in a projector, locate the draw-
ing or desired information, and read the dimen-



sion. If they need to study a detail of the draw-
ing or work with the drawing for a long period
of time, an enlarged photographic reproduction
can be made, using the microfilm as a negative.

Microfilm of drawings has many other uses and
advantages. However, microfilm is not intended
to replace the need for original drawings, espe-
cially where the originals are modified and kept
current over a long period of time.

When drawings are filmed on continuous
reels, corrections can be made by cutting
out superseded drawings and splicing in the
revised ones. When these corrections become
numerous, the procedure becomes impracti-
cal and is discarded in favor of again filming
all the related drawings.

A method that allows corrections to be made
easily is to photograph the drawings and then
cut up the film into individual slides. This has
one disadvantage; it requires considerable time
to convert the film into slides, insert them into
transparent protective envelopes, and arrange
them in sequence so that desired drawings can
be located quickly.

A 70-mm microfilm has been developed to
replace the older and less versatile 16-mm and
35-mm films. With it, larger size drawings can
be reproduced as individual frames or slides,
and these can be inserted in regular paper
envelopes and kept in an ordinary file. When
held to the light, this large microfilm can be
read with the naked eye.

Microfiche. A variation of microfilm is micro-
fiche, which uses a sheet of film, typically 4
inches by 6 inches, on which the information
is recorded. Literally thousands of pages of
written material can be kept in one three-ring
binder or in a small file box (Figure 2-2-10).

The microfiche is divided into grids that are used
to identify and locate information in much the
same way that grid lines are used to find locations
on a road map. The size of the grids is based on
the size of the document being reproduced onto
the microfiche. As an example, if standard 8-1/2
x 11 inch paper is reproduced on microfiche, most
microfiche will accommodate 24 grids across and
12 or 13 grids down. That means each fiche can
contain at least 288 pages on information.

Microfiche is read on a reader which consists
of a plate to hold the film, a light source which
illuminates the film, a lens which enlarges
the image and allows for focusing, a mirror to
deflect the image to the viewing screen, and
the viewing screen. Some microfiche readers
have the capability to copy the selected image
onto paper, which allows the user to have a
hard copy of the information or drawing.
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NOTE: Hard copies should be destroyed
immediately after use to avoid using
material that has changed or been super-
seded since the hard copy was made.

Computers

While the computer is by no means new, many
ways of using them are. Today, the computer is
utilized by the aircraft maintenance technician
to assist in the design and maintenance of air-
craft parts and components. The Boeing 777 is
the first commercial airplane that was designed
on, and exclusively drawn on, a computer.

Computer-Assisted Design (CAD). Most mod-
ern aircraft are at least partially designed by engi-
neers and designers using computers to assist
them. In addition to assistance in solving com-
plex design formulas, computers can be used to
draw the designer’s idea or concept on the screen,
and transfer it to paper via a printer. By formu-
lating the design on a computer screen, mirror
images, corrections, and adjustments are simple
key strokes, as compared to manual design,
which requires extensive erasure or redrawing.

Computer-assisted Maintenance (CAM).
Through the use of the computer, today’s air-
craft technician can record performed mainte-
nance, find repair procedures, locate illustra-
tions, track equipment performance, account
for time, order parts, and much more. Programs
and software available to the technician allow
access to more information in less time, with
more accuracy and less error than ever before.
As technology improves the computer and its
software, and because computers are becom-
ing ever more affordable and easy to use, the
future of CAM is basically unlimited.
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Principles of
Aviation
Physics

Section 1

Introduction to Physics

Physics is the term applied to that area of
knowledge regarding the basic and funda-
mental nature of matter and energy. It does not
attempt to determine why matter and energy
behave as they do in their relation to physical
phenomena, but rather how they behave.

People who maintain and repair aircraft should
have a knowledge of physics, because these
basic laws apply to all the mechanical, elec-
trical, and hydraulic systems of the airframe
and powerplant. With this basic knowledge,
the technician is better able to understand and
identify the problems that occur and determine
methods of repair and preventive measures to
ensure the safe operation of the aircraft.

Matter. Matter is the most basic of all things
related to physics and the material world, yet
it is one of the most difficult things to define.
Matter itself cannot be destroyed, but it can be
changed from one state to another by chemi-
cal or physical means. It is often considered in
terms of the energy that it contains, absorbs, or
gives off. Under certain controlled conditions,
matter can be of great benefit to man. For lack
of a better definition, matter is any substance
that occupies space and has weight.

Chemical nature of matter. The smallest par-
ticle of any substance is the molecule. This can be
broken down to elemental particles called atoms.
It is these atoms, or combination of atoms, that
form the molecules of matter. In nature only 92 of
these elements exist. Others have been produced
by laboratory means, but, for our purposes, we
will only consider the 92 natural elements.

Learning
Objectives
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Figure 3-1-1. A water molecule.

These atoms are combined in various manners
to form molecules of matter. Most of these mol-
ecules are made up of two or more atoms. A
few are made of a single atom, such as many of
our inert gases like argon, helium, and neon.

If two or more molecules are grouped together
and keep their chemical identity, they are
referred to as a legion. An example of this
would be soil that could contain various
amounts of elements.

In other cases, two or more atoms could be
combined and result in a chemically different
substance, which is called a compound. Water
is one of these compounds. It is made of hydro-
gen and oxygen and is chemically referred to as
H,O, meaning that two atoms of hydrogen have
formed with one atom of oxygen to form one
molecule of water (Figure 3-1-1).

By using different combinations of atoms, dif-
ferent compounds may be formed. For example,
the same elements are found in both alcohol
and sugar, but the molecules are not the same.
All of our various metal alloys are formed of
compounds in order to obtain the characteris-
tics most desirable for a particular function.

Physical nature of matter. It has been deter-
mined that matter is composed of tiny particles
called molecules. The molecules are so small
that they cannot be seen even with the use of
an optical microscope, and their masses are so
small that they cannot be detected on the most
sensitive analytical balances. However, there
is indirect physical and chemical evidence to
establish the fact that molecules exist in matter.
One of the methods of establishing these facts
is the kinetic-molecular theory. It theorizes that
all matter, regardless of its state, is comprised
of molecules. These molecules are the small-
est particle of a substance that still retains the
physical and chemical properties of that sub-
stance. All of the molecules in one substance are
exactly alike and unique to that substance. This
means that the molecules in one substance are
not like those found in any other substance.

Figure 3-1-2. Darting smoke.

In this theory, the molecules are in constant
motion with varying speeds. This theory is
often shown by observing through a micro-
scope the action of smoke in a box. In this
experiment, the particles of smoke appear
to dart in one direction and then another, as
shown in Figure 3-1-2.

The reason for this action is quite simple: The
particles of smoke are considerably larger than
the molecules of the air in which they are sus-
pended; therefore, they constantly collide.
When more collisions occur on one side than
the other, the smoke particles change direc-
tion.

When the molecules are close together, they
attract each other until they get too close, and
then they repel each other. This attraction and
repulsion is one of the determining factors in
the state of the matter.

Physical states. Basically, all matter falls into
three states: solids, liquids, and gases. The
same type of matter may exist in all three
forms. These three forms will all contain the
same identical molecules. The most common
example of this is water. When it is water, it
is a liquid. If we freeze it, the water becomes
a solid. If we heat it above the boiling point, it
becomes a gas. These different states of mat-
ter are explained by the relative position of the
molecules and the freedom of their motions.

Solids. In a solid state, matter has a definite
shape and volume. This shape may be changed
by outside forces, such as forging, rolling, or
milling — common processes with metals —
or it may be changed by chemical processes.
It is thought that, in the solid state, the mole-
cules oscillate about fixed points and are held
together by a strong molecular force called
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Metric system

English system

Equivalents

Length
(distance)

Centimeter

Foot

1 centimeter = 10 millimeters

1 inch = 2.54 centimeters

1 decimeter = 10 centimeters

1 foot = 12 inches

1 foot = 30.5 centimeters

T meter = 100 centimeters

1 yard = 3 ft.

1 meter = 39.37 inches

1 kilometer = 1,000 meters

1 mile = 5,280 ft.

1 kilometer = 0.62 miles

Weight (mass)

Gram

Pound

1 gram = 1,000 milligrams

1 pound = 16 ounces

1 pound = 453.6 grams

1 kilogram = 1,000 grams

1 ton = 2,000 lbs.

1 kilogram = 2.2 Ibs.

Time Second

Second

Same as for English system

1 second = 1/86,400 of
average solar
day

Table 3-1-1. Comparison of metric and English systems of measurement.

cohesion. It is cohesion that causes solids to
retain their shape and volume.

Liquids. Liquids have a definite volume but
an indefinite shape. In other words, the liquid
takes the shape of its container. Another char-
acteristic of liquids is that, for all practical pur-
poses, the liquids are incompressible. This ele-
ment is extremely important regarding the use
of hydraulic power.

The molecules inliquids are not held together in
rigid patterns, as are those of solids. However,
liquid molecules are almost as close together
as those of solids, without fixed positions. This
can be easily shown by adding a few drops of
a colored liquid dye to a clear liquid. Soon the
clear liquid will take the color of the few drops
of dye. This is caused by the molecules of dye
passing between the spaces between the mol-
ecules of the clear liquid.

Gases. Gases differ from solids and liquids
in that they have neither a definite shape nor
a definite volume. This is demonstrated by the
fact that, regardless of the shape of the con-
tainer, the gas will fill the whole container.

The molecules of gases have no cohesive forces
upon each other. This, coupled with the fact
that the molecules travel rapidly, accounts for
the ability of gaseous materials to fill a con-
tainer very shortly after being released.

Two other molecular properties of gases are its
elasticity and compressibility. These properties
are continually in use in aviation, as shown
with the use of pneumatic tires, accumulators,
hydraulic systems, and landing gear struts, to
name a few.

Weight and mass. All matter has weight and
mass. These two terms are often considered to
be similar terms, but, in reality, they are not.
Weight is a function of gravity. For this reason,
the weight of an object may vary from one
place to another, while mass does not. Mass
is the amount of matter in a body and can be
determined by the following formula:

weight
mass =

acceleration due to gravity

To measure these characteristics of matter, a
system of measurement must be used. The two
most commonly used systems of measurement
are the English system, which is still in general
use in the United States, and the metric sys-
tem, used in most European countries and now
adopted by the Armed Forces of the United
States. The metric system is normally used in
all scientific applications.

The three basic quantities that require units
of measurement are length (distance), weight
(mass) and time.

The English system uses different units for the
measurement of mass and length. The pound is
the unit of weight, the foot is used to measure
length. The second is used to measure time, the
same as in the metric system.

The units of one system can be converted to
units in the other system by using a conver-
sion factor, or by referring to a chart similar
to the one shown in Table 3-1-1. In this table,
the English and the metric systems are com-
pared; in addition, a column of equivalents is
included, which can be used to convert units
from one system to the other.

Time same for both systems
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- I - Gases o
Solids Spec!flc Liquids Spec!flc (air standard at 0 °C, and 76.0 Spec!flc
gravity | (room temperature) | gravity centimeters of mercury) gravity
Aluminum 2.7 Alcohol, ethyl 0.789 | Air 1.000
Bronze 8.8 Gasoline 0.68 Hydrogen 0.0695
0.72
Copper 8.9 Oil (paraffin) 0.8 Nitrogen 0.967
Ice 0.917 | Water 1.00 Oxygen 1.105
Titanium 4.4 |P4 0.785 | Acetylene 0.898
Iron 7.9 JP5 0.871 Carbon dioxide 1.528

Table 3-1-2. Typical values of specific gravity.

Density. The density of a substance is its weight
per unit volume. The unit volume selected for
use in the English system of measurement
is 1 cubic foot (ft'). In the metric system, it is
1 cubic centimeter (cm’). Therefore, density is
expressed in pounds per cubic foot (Ib/ft’) or in
grams per cubic centimeter (g/cm’).

To find the density of a substance, its weight and
volume must be known. Its weight is divided by
its volume to find the weight per unit volume.

For example, the liquid that fills a certain con-
tainer weighs 1,497.6 Ibs. The container is 4 feet
long, 3 feet wide, and 2 feet deep. Its volume is
24 ft’ (4 feetx 3 feetx 2 feet). If 24 ft’ of this liquid
weighs 1,497.6 Ibs., then 1 ft’ weighs 1,497.6/24,
or 62.4 Ibs. Therefore, the density of the liquid
is 62.4 Ib/ft’.

This is the density of water at 4°C, and that is
usually used as the standard for comparing
densities of other substances. (In the metric sys-
tem, the density of water is 1 g/cm’) The stan-
dard temperature of 4°C is used when measur-
ing the density of liquids and solids. Changes
in temperature will not change the weight of
a substance but will change the volume of the
substance by expansion or contraction, thus
changing its weight per unit of volume.

The procedure for finding density applies to
all substances; however, it is necessary to con-
sider the pressure when finding the density of
gases. Temperature is more critical when mea-
suring the density of gases than it is for other
substances. The density of a gas increases in
direct proportion to the pressure exerted on it.
Standard conditions for the measurement of the
densities of gases have been established at 0°C
for temperature and a pressure of 76 centimeters
(cm) of mercury. This is the average pressure of
the atmosphere at sea level. Density is computed
based on these conditions for all gases.

Specific gravity. It is often necessary to com-
pare the density of one substance with that of

another. For this purpose, a standard is needed.
Water is the standard that physicists have cho-
sen to use when comparing the densities of all
liquids and solids. For gases, air is most com-
monly used. However, hydrogen is sometimes
used as a standard for gases.

In physics, the word specific implies a ratio.
Thus, specific gravity is calculated by com-
paring the weight of a definite volume of the
given substance with the weight of an equal
volume of water. The terms specific weight or
specific density are sometimes used to express
this ratio.

The following formulas are used to find the
specific gravity (sp. gr.) of liquids and solids:

weight of the substance

sp.gr. =
P9 weight of an equal volume of water

or

density of substance

Sp-gr density of water

The same formulas are used to find the density of
gases by substituting air or hydrogen for water.

Specific gravity is not expressed in units, but
as pure numbers. For example, if a certain
hydraulic fluid has a specific gravity of 0.8, 1 ft’
of the liquid weighs 0.8 times as much as 1 ft’ of
water: 62.4 times 0.8, or 49.92 lbs. In the metric
system, cm’ of a substance with a specific grav-
ity of 0.8 weighs 1 times 0.8, or 0.8 g. (Note that,
in the metric system, the specific gravity of a
liquid or solid has the same numerical value as
its density.) Since air weighs 1.293 grams per
liter (g/L), the specific gravity of gases does not
equal the metric densities.

Specific gravity and density are independent of
the size of the sample under consideration, and
depend only upon the substance of which it is
made. See Table 3-1-2 for typical values of spe-
cific gravity for various substances.



A device called a hydrometer is used for measuring
specific gravity of liquids. It consists of a tubular-
shaped glass float contained in a larger glass tube
(Figure 3-1-3). The larger glass tube provides the
container for the liquid. A rubber suction bulb
draws the liquid up into the container. There must
be enough liquid to raise the float and prevent it
from touching the bottom. The float is weighted
and has a vertically graduated scale.

To determine specific gravity, the scale is read
at the surface of the liquid in which the float is
immersed. An indication of 1.000 is read when
the float is immersed in pure water. When
immersed in a liquid of greater density, the
float rises, indicating a greater specific grav-
ity. For liquids of lesser density, the float sinks,
indicating a lower specific gravity.

An example of the use of the hydrometer is its
use in determining the specific gravity of the
electrolyte (battery liquid) in a lead-acid air-
craft battery. When a battery is discharged, the
calibrated float immersed in the electrolyte will
indicate approximately 1.150. The indication of
a charged battery is between 1.275 and 1.310.

Section 2

Types of Energy

Under certain conditions, matter has the ability
to do work, even though none is being done at
the present time. There are many examples in our
everyday life. For example, a battery has power
but no current is being drawn from it. A gallon
of jet fuel, if burned in the engine, will produce
work. These are all examples of matter that could
produce work. Energy is simply the capacity to do
work. This capacity breaks down into two classi-
fications of energy: potential and kinetic energy.

Potential energy. Potential energy is energy that
is stored. It may be classified into three groups:

* Energy due to position
* Energy due to distortion of an elastic body

e Energy which produces work through
chemical action

Water in an elevated reservoir and the lifted
weight of a pile driver are examples of the
first group. A stretched rubber band and com-
pressed spring are examples of the second
group. Energy in coal, food, and storage batter-
ies are examples of the third group.

Kinetic energy. Kinetic energy occurs when
bodies in motion require work to put them in
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1.150
Discharged

1.275
Charged

Figure 3-1-3. A hydrometer measures specific gravity of liquids.
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motion. Thus, they possess energy of motion.
Energy due to motion is known as kinetic
energy. A moving vehicle, a rotating flywheel,
and a hammer in motion are examples of
kinetic energy.

Energy is expressed in the same units as those
used to express work. The quantity of potential
energy possessed by an elevated weight may
be computed by the following equation:

Potential Energy = Weight x Height

If weight is given in pounds and height in feet,
the final unit of energy will be foot-pounds
(ft. Ibs.).

Example: An aircraft with a gross weight of
110,000 Ibs. is flying at an altitude of 15,000
ft. above the surface of the earth. How much
potential energy does the aircraft possess with
respect to the earth?

Potential Energy = Weight x Height
PE = 110,000 x 15,000
PE = 1,650,000,000 ft-Ib

The most common forms of energy are: heat,
mechanical, electrical, and chemical. The vari-
ous forms of energy can be changed, or trans-
formed, into another form in many different
ways. For example, in the case of mechanical
energy, the energy of work done against fric-
tion is always converted into heat energy, and
the mechanical energy that turns an electric
generator develops electrical energy at the out-
put of the generator.

Work

The study of machines, both simple and com-
plex, is in one sense a study of the energy of
mechanical work. This is true because all
machines transfer input energy (the work done
on the machine) to output energy (the work
done by the machine).

Work, in the mechanical sense of the term, is
done when a resistance is overcome by a force
acting through a measurable distance. Two fac-
tors are involved;

e Force

e Movement through a distance

As an example, suppose a small aircraft is
stuck in the snow. Two people push against it
for a period of time, but the aircraft does not
move. According to the technical definition, no
work was done in pushing against the aircraft.
By definition, work is accomplished only when

an object is displaced some distance against a
resistive force. In equation form:

Work = Force (F) x Distance (D)

The physicist defines work as force times displace-
ment. Work done by a force acting upon a body
is equal to the magnitude of the force multiplied
by the distance through which the force acts.

In the metric system, the unit of work is the
joule, where one joule is the amount of work
done by a force of one Newton when it acts
through a distance of one meter.

1 joule =1 Newton x meter
Hence, we can write the definition in the form:
W (joules) = F (Newtons) x D (meters)

EXAMPLE: If we push a box for 8 meters
(m) across a floor with a force of 100
Newtons, the work we perform is:

W = FD = 100 Newtons x 8m = 800 joules

EXAMPLE: How much work is done in
raising a 500-kilogram (kg) elevator cab
from the ground floor of a building to its
tenth floor, 30m higher? We note that the
force needed is equal to the weight of the
cab, which is Mg.

In the metric system, mass, rather than weight,
is normally specified. To find the weight in
Newtons (the metric unit of force) of something
whose mass in kilograms is known, we simply
turn to F = Mg and set G = 9.8 m/sec’

F (Newtons) = M (kilograms) x G (9.8 m/sec?)

W (joules) = M (kilograms) x G (9.8 m/sec’) x D
(meters)

FD = MGD = 500 kg x 9.8 m/sec’ x 30m
=147,000 joules

=1.47 x 10’ joules

Power

Power is a badly abused term. In speaking of
power-driven equipment, people often confuse
the term power with the ability to move heavy
loads. This is not the meaning of power. A sew-
ing machine motor is powerful enough to rotate
an aircraft engine propeller, providing it is con-
nected to the crankshaft through a suitable
mechanism. It could not rotate the propeller at
2,000 revolutions per minute (r.p.m.), however,
for it is not powerful enough to move a large



load at a high speed. Therefore, power means
the rate of doing work. It is measured in terms of
work accomplished per unit of time. In equation
form, it reads:

Force X Distance FD
Power = ————  or P = —
time t

If force is expressed in pounds, distance in
feet, and time in seconds, then power is given
in foot-pounds per second. Time may also be
given in minutes. If time in minutes is used in
this equation, then power will be expressed in
foot-pounds per minute.

pounds x feet
Power _—

= ft-lbs/sec
seconds

or

pounds x feet

Power = = ft-lbs/min

minutes

EXAMPLE: An aircraft engine weighing
3,500 Ibs. was hoisted a vertical height of
7 ft.in order to install it on an aircraft. The
hoist was hand-powered and required 3
minutes of cranking to raise the engine.
How much power is developed by the
man cranking the hoist? (Do not include
the friction in the hoist.)

FD
P=—
t
3,500 pounds x 7 feet
Power = -
3 minutes
= 8,167 ft-Ib/min

Power is often expressed in units of horsepower.
One horsepower is equal to 550 ft-1b./sec, or 33,000
ft-Ib./min. (Example: In the hoist example above,
calculate the horsepower developed by the man.)

Power in ft. - Ib/min
Horsepower = —M————

33,000
b
t
"P= 33000
8,167
= 33000 =0.247, or about 1/4 hp

Power is rate of doing work:

p= W
t

In the metric system, the unit of power is the
watt, where:

1 watt = 1 joule/sec
1hp=746 watts
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Thus, a motor with an output of 5,000 watts is
capable of doing 5,000 joules of work per sec-
ond. A kilowatt (kw) is equal to 1,000 watts.
Hence, the motor has a power output of 5 kw.

How much time does a 500 kg elevator cab need
to ascend 30 meters if it is being lifted by a 5 kw
motor? We rewrite P = W/t into the formula:

t= —
P

and then substitute W = 1.47 x 10’ joules and
P = x 5.10° watts to find that:

. w 1.47 x 10° joules

- " = 29.4sec
P 5 x 10° watts

Force

Force may simply be defined as a push or pull
that causes a change in motion. This could start
a body at rest into motion, or stop a body in
motion. It can also accelerate the body or decel-
erate it. All machines, regardless of how simple
or complex, depend upon force and interaction
of forces to perform their various operations.
Force may be applied parallel to displacement
or at angles.

The Lever

The simplest machine, and perhaps the most
familiar one, is the lever. A seesaw is a famil-
iar example of a lever in which one weight bal-
ances the other.

There are three basic parts in all levers: namely,
the fulcrum, F; a force or effort, E; and a resis-
tance, R. Shown in Figure 3-2-1 are the piv-
otal point (F) fulcrum, the effort (E), which is
applied at a distance (A) from the fulcrum and
resistance (R), which acts at a distance (2) from
the fulcrum. Distances (A) and (a) are the lever
arms.

Figure 3-2-1. A simple lever.
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Fulcrum

é Weight J)

Figure 3-2-2A. First-class lever.

l Effort

Effort Fulcrum Resistance

Rocker- Roller

Valve seat

Valve guide

Figure 3-2-2B. A rocker arm is one example of a
first-class lever.

Fulcrum Effort T

é 8) Weight

Figure 3-2-3A. Second-class lever.

Figure 3-2-3B. A wheelbarrow is a second-class lever. Effort is applied oppo-
site the fulcrum and the load (resistance) located in between the two.

T Effort

Weight g)

Figure 3-2-4A. Third-class lever.

' Fulcrum

Figure 3-2-4B. A third-class lever, with the effort
applied between the fulcrum and the resistance.

First-class levers. In the first-class lever,
Figure 3-2-2A, the fulcrum is located between
the effort and the resistance. As mentioned
earlier, the seesaw is a good example of a first-
class lever. The amount of weight and the dis-
tance from the fulcrum can be varied to suit
the need. Another good example of a first-class
lever is the rocker arm used to move the valve
in an engine, as shown in Figure 3-2-2B. The
fulcrum is the rocker arm pin. The push rod
is the force applied, and the valve and spring
are the resistance. There are hundreds of other
examples of first-class levers, which include
shears, pliers, and pry bars, to name a few.

Second-class levers. The second-class lever
(Figure 3-2-3A) has the fulcrum at one end; the
effort is applied at the other end. The resistance
is somewhere between these points. The wheel-
barrow in Figure 3-2-3B is a good example of a
second-class lever.

Third-class levers. There are occasions when
it is desirable to speed up the movement of the
resistance, even though a large amount of effort
must be used. Levers that help accomplish this
are third-class levers. As shown in Figure 3-2-
4A, the fulcrum is at one end of the lever, and
the weight or resistance to be overcome is at the
other end, with the effort applied at some point
between.

Third-class levers are easily recognized
because the effort is applied between the ful-
crum and the resistance. This is illustrated by
the diagram in Figure 3-2-4B. While point E is
moving the short distance ¢, the resistance R
must be greater than that of E, since R covers
a greater distance in the same length of time.

The landing gear shown in Figure 3-2-4C is
a good example of a third-class lever. In this



Trunnion
bearing surface

N

Retracting
mechanism

Figure 3-2-4C. A landing gear is an example of a
third-class lever.

case, the strut is the lever, the hydraulic cyl-
inder is the force and the wheel is the weight.
This third-class lever is a method to gain speed
in raising the weight.

Inclined Plane

The inclined plane is a simple machine that
facilitates the raising or lowering of heavy
objects by application of a small force over a rel-
atively long distance. Some familiar examples
of the inclined plane are a mountain highway
and loading ramps.

The inclined plane permits a large resistance
to be overcome by application of a small force
through a longer distance than the load is to be
raised. In Figure 3-2-5, a 300-1b. barrel is being
rolled up a ramp to the bed of a truck, three
feet. above the sidewalk. The ramp is nine feet.
long.

Without the ramp, a force of 300 Ibs., applied
straight up through the three foot distance,
would be required to load the barrel. With the
ramp, a force can be applied over the entire nine
feet. of the ramp as the barrel is rolled slowly up
to a height of three feet. It can be determined,
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by observation, that a force of only three-ninths
of the 300 Ibs., or 100 Ibs., will be required to
raise the barrel by using an inclined plane. This
can also be determined mathematically, using
the following formula:

where:
L = Length of the ramp, measured along the slope
H = Height of the ramp
R = Weight of object to be raised or lowered

E = Force required to raise or lower object

In this case, L =9 ft; H = 3 ft,; and R = 300 Ib.
Substituting these values in the formula:

9 _ 300
3 E
9E =900
E=100lb

Since the ramp is three times as long as its
height, the mechanical advantage is three. The
theoretical mechanical advantage is found
by dividing the total distance through which
the effort is exerted by the vertical distance
through which the load is raised or lowered.

Pulley

A single fixed pulley is really a first-class lever
with equal arms. The arms EF and FR in Figure
3-2-6 are equal; hence, the mechanical advantage
is one. Thus, the force of the pull on the rope
must be equal to the weight of the object being
lifted. The only advantage of a single fixed pulley
is to change the direction of the force.

With some modification, a single pulley can
also be used to magnify the force exerted. In

Figure 3-2-6. A single
fixed pulley.

Figure 3-2-5. An inclined plane.
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Figure 3-2-8. A single
moveable pulley as a
second-class lever.

Figure 3-2-7. A single movable pulley.

Figure 3-2-7, the pulley is not fixed, and the rope is
doubled because it supports a 200-1b. weight. Used
in this manner, a single block-and-tackle can lift
the 200-Ib. weight with a 100-Ib. pull, since each
half of the rope (tackle) carries one-half the total
load. The mechanical advantage is two, which can
be verified by using the following formula:

MA < R _ 200 -5
T E 100
E = Effort

R = Weight of object to be raised or lowered

MA = Mechanical advantage

Cam timing gear twice size of
crankshaft gear operates 1/2 speed

Figure 3-2-9. An example of spur gears.

The single movable pulley used in the manner
shown in Figure 3-2-7 is a second-class lever. To
see this, refer to Figure 3-2-8. The effort E acts
upward on the arm EF, which is the diameter
of the pulley. The resistance R acts downward
on the arm FR, which is the radius of the pul-
ley. Since the diameter is twice the radius, the
mechanical advantage is two.

When the effort at E moves up two feet., the
load at R is raised only one foot. This is true of
all systems of block-and-tackle, for if a mechan-
ical advantage is obtained, the length of rope
passed through the hands is greater than the
distance that the load is raised.

The mechanical advantage of a pulley system
is found by measuring the resistance and the
effort, then dividing the amount of resistance
by the effort. A shorthand method often used
is simply to count the number of rope strands
that move or support the movable block.

Gears

The gear is used in most complex mechanical
machinery today. Gears can be used to increase
mechanical advantage, increase speeds, or
change directions. There are four basic types of
gears. They are the spur gear, bevel gear, worm
gear, and the helical gear. Myriad sizes and
variations can be used to perform hundreds of
tasks. A few of these applications seen on air-
craft include reducing engine r.p.m., driving
engine accessories, deploying and retracting
flaps, and driving helicopter rotors.

Spur gears. Spur gears are used to drive two
parallel shafts as shown in Figure 3-2-9. The ratio
of the two gears is in proportion to the number

Driven

/_ gear

Drive
gear

Figure 3-2-10. Gears rotating in the same plane.



Figure 3-2-11. An example of bevel gears.

of teeth on each gear. If a 2 to 1 ratio was desired,
then one gear would have twice the number of
teeth as the other gear. However, most applica-
tions will place odd numbers of teeth on one
gear so the same teeth do not continuously pass
over each other. This spreads wear evenly among
the teeth of the gear. This is why ratios are nor-
mally 2.11:1 or some other odd number. In some

Sun gear
driven by
engine

Ring gear
fixed to
engine case

Propeller shaft
attached to
pinions

Sun gear driven
by crankshaft

Exploded view
Figure 3-2-12. Spur-planetary gears.
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instances, an even ratio is required, such as tim-
ing gears on an engine. It might also be noted that
gears change direction of rotation unless a varia-
tion is used. Commonly, if the same direction
must be maintained, internal teeth are placed on
the driven gear, as shown in Figure 3-2-10.

Bevel gears. Bevel gears can be used to change
direction and change speed, as shown in Figure
3-2-11. A common application is a tail rotor gear
box used on a helicopter to drive the tail rotor.

Worm gear. The worm gear is used in appli-
cations where a high mechanical advantage is
necessary, generally at low speed. Such devices
are often used to drive flaps. With this device,
the drive or driven shaft has a ridge that meshes
with the gear. One revolution of the shaft will
rotate the gear one tooth.

Planetary gearing. Planetary gearing is used
in several aviation applications. The two most
widely used areas are propeller reductions on
reciprocating or turbine engines and helicop-
ter transmissions. In this system, r.p.m. can be
reduced in a fairly compact unit.

The spur-planetary gear reduction consists of
a sun gear splined to the crankshaft, a large sta-
tionary gear called a bell gear or ring gear, and a
set of small planetary gears mounted to a car-
rier. This carrier is fastened to the propeller
shaft, and the planetary gears mesh with both
the sun gear and the bell gear.

The stationary gear, or bell gear, is attached to
the front case. When the sun gear rotates, the
planetary gears will also rotate, because they
are meshed with a ring as well. As they rotate,
or walk, around the bell gear, they will rotate
the propeller shaft as shown in Figure 3-2-12.

Section 3

Principles of Stress

Whenever a solid body is deformed by external
forces, there are internal molecular forces that
resist this change. This internal resistance is called
stress. Stress can be shown as a ratio as follows:

External Force
Stress =

Area over the applied force

The common unit of stress in the United States is
pounds per square foot or pounds per square inch.

There are two basic types of stress: tension and
compression. The three other forms, torsion,
bending, and shear, are applications of these two.
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Direction of
pedal movement
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Direction of
airplane motion

Direction of,
-
rudder movement

Figure 3-3-1. Control cables under tension.

These forces are commonly applied to the
aircraft structure and components in normal
flight. For this reason, the design of the aircraft
and its components must account for these nor-
mal stresses. Any repairs or alterations to the
aircraft must be made so that it can be ensured
that they will also withstand the stresses
applied during flight.

Tension

Tension occurs when a force tends to pull a body
apart. Tension occurs in many parts of an air-
craft and may often occur with other forces on
the same component. In one of the purest forms,
tension is applied to a control cable every time
the control is moved, as shown in Figure 3-3-1.
In Figure 3-3-2 the cable is in tension while the
bullet is pulled through the tube to remove the
dent. Another example of tension would be the
helicopter transmission mount each time the
helicopter lifts off the ground (Figure 3-3-4).

Compression

Compression is the resistance to any external
force that tends to push the body together. This

Figure 3-3-2. Tension is applied to the cable used to pull a “bullet” through
a tube while removing a dent.

also occurs on an aircraft structure or compo-
nents. In fact, many times a part which has ten-
sion applied at one point may have compres-
sion applied at another point in the flight. An
example of this is shown in Figure 3-3-3. This
is an aircraft seat leg. When the pilot sits in the
seat, compression is applied to the leg due to the
pilot’s body weight. This load may be increased
by flight maneuvers by twice the normal weight
in a loop, or by landing the aircraft. In the exam-
ple of the transmission mount carrying a tension
load in flight, it should be noted that it will carry
a compression load in landing. This will be quite
typical of much of the structure of the aircraft.

Torsion

Torsion is a combination force that has both ten-
sion and compression acting on the component
at the same time. This torsional force is often
referred to as a twisting force. This type of force
is usually placed upon driveshafts, crankshafts,
or propshafts that are common to aircraft.

It should be noted that most parts of the air-
craft are placed under more than one stress at a
time and must be designed to withstand these
stresses. While one stress may be most evident,
others may occur at the same time or at differ-
ent modes of operation. This is quite evident in
the example in Figure 3-3-4. This is a helicopter
mast used to drive the main rotor. When the
mast is first rotated, it is subject to torsion; as
the helicopter lifts, a tension load is added; and
when it lands, a compression load is placed on
the mast.

Bending

Bending is another combination force that is
applied to many components of the aircraft. This
force may be applied with one force being greater

\‘t__Q y A
Compression
i

Figure 3-3-3. An example of compression.




Compression Tension

Torsion
during
rotation

Figure 3-3-4. Examples of torsion, tension and
compression.

than the other, or they may be equal. An example
of this force is shown on an aircraft wing when
the aircraft is in flight. The skin on the top of the
wing is subject to compression, while the bot-
tom of the wing is subject to tension, as shown in
Figure 3-3-5. When the aircraft is on the ground
these forces are reversed with the top skin now
in tension and the bottom in compression,

Shear

Shear is a force that tends to pull a component
apart. This is a common force applied to rivets
used to join sheet metal on aircraft. When the
sheet metal is stressed with either a tension or
compression load, the rivet is placed in a shear
load, as shown in Figure 3-3-6. The combination
is not uncommon, since the sheet metal may be
stressed differently and at different times dur-
ing flight and landings.
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Figure 3-3-5. An example of bending.

Strain

Strain is the consequence of stress. When stress
is applied to any body, strain is the result. If
strain does not exceed the elastic limit of the
body, there will be no visible change. However,
over a period of time a change will take place.
For example, if we bend a piece of wire back
and forth, it will eventually yield or break. This
will take place with any solid body. In aircraft
structures, this may take place by pressurizing
and depressurizing the fuselage or it may be the
result of landing. Often highly stressed parts are
assigned a time life, or a finite life, to eliminate
the possibility of failure of the component.

Section 4

Principles of Motion

Newton’s Law of Motion

When a magician snatches a tablecloth from a table
and leaves a full setting of dishes undisturbed,
this is not a mystic art, but a demonstration of the
principle of inertia. Inertia is responsible for the
discomfort felt when an airplane is brought to a
sudden halt in the parking area and the passen-
gers are thrown forward in their seats. Inertia is
a property of matter. This property of matter is
described by Newton’s First Law of Motion.

Shear

g

Figure 3-3-6. An example of shear.
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Newton’s First Law of Motion. Objects at rest
tend to remain at rest; objects in motion tend to
remain in motion at the same speed and in the
same direction.

Bodies in motion have the property called
momentum. A body that has great momentum
has a strong tendency to remain in motion and
is therefore hard to stop. For example, a train
moving at even low velocity is difficult to stop
because of its large mass.

Newton’s Second Law of Motion. Newton's
Second Law applies to this property. It states:
When a force acts upon a body, the momentum
of that body is changed. The rate of change of
momentum is proportional to the applied force.

The momentum of a body is defined as the
product of its mass and its velocity. Thus,

Momentum = mass x Velocity
or
M=mV

Now if a force is applied, the momentum
changes at a rate equal to the force or:

F = rate of change of momentum

MM,

t

Substituting mV for M:

mV,-mV,
t

F=

where:
m, = Final mass
m, = Initial mass
t = Elapsed time
V, = Final velocity
V, = Initial velocity

Since the mass does not usually change, m, =
m, = m. Then:
mV,-mV,

t

(Vi-V)
=-m —°
t
From the previous section the second term is
recognized as acceleration. Then the second
law becomes:

F=ma

On Earth, gravity exerts a force on each body,
causing an acceleration of 32 feet/sec’, usually
designated as g force. The force is commonly
called weight, W. Using the formula above:

W =mg
and

w

m=—

9

On Earth, the second law becomes:

F=ma
W()

= —(a
€]

The following examples illustrate the use of
this formula.

EXAMPLE: A truck weighs 32,000 Ibs.

and is traveling at 10 ft./sec. What force is
required to bring it to rest in 10 seconds?

F= ﬂ(a)
9

W (V,-V)
gt

32,000 Ibs (0-10 ft/sec)
32 ft/sec?

10 sec

32,000 lIbs x (-10 ft./sec)
32 ft/sec? x 10 sec

=-1,000 Ib

The negative sign means that the force must be
applied against the truck’s motion.

EXAMPLE: An aircraft weighs 6,400 Ibs.
How much force is needed to give it an
acceleration of 6 ft./sec™?

W
F= g(a)

6,400 lbs x 6 ft/sec?
32 ft/sec?

= 1,200 Ib

Newton’s Third Law of Motion. Newton’s
Third Law is often called the law of action and
reaction. It states that for every action, there is an
equal and opposite reaction. This means that if a
force is applied to an object, the object will sup-
ply a resistive force exactly equal to and in the
opposite direction of the force applied. It is easy
to see how this might apply to objects at rest. For



example, as a person stands on the floor, the floor
exerts a force against their feet exactly equal to
their weight. But this force is also applicable
when a force is applied to an object in motion.

When the force applied to an object is more
than sufficient to produce and sustain uniform
motion, inertia of the object will cause such
a resistive force that the force opposing the
motion of the object equals the force producing
the motion. This resistance to change in velocity
due to inertia is usually referred to as internal
force. When several forces act upon an object
to produce accelerated motion, the sums of the
external forces are in a state of unbalance; how-
ever, the sums of the external and the internal
forces are always in a state of balance, whether
motion is being sustained or produced.

Forces always occur in pairs. The term acting
force means the force one body exerts on a sec-
ond body, and reacting force means the force the
second body exerts on the first.

When an aircraft propeller pushes a stream of
air backward with a force of 500 lbs., the air
pushes the blades forward with a force of 500
Ibs. This forward force causes the aircraft to
move forward. In like manner, the discharge
of exhaust gases from the tailpipe of a turbine
engine is the action that causes the aircraft to
move forward.

The three laws of motion that have been dis-
cussed here are closely related. In many cases,
all three laws may be operating on a body at
the same time.

Motion of Bodies

The study of the relationship between the
motion of bodies or objects and the forces act-
ing on them is often called the study of force and
motion. In a more specific sense, the relationship
between velocity, acceleration, and distance is
known as kinematics.

Speed and velocity. In everyday usage, speed
and velocity often mean the same thing. In
physics, they have definite and distinct mean-
ings. Speed refers to how fast an object is mov-
ing, or how far the object will travel in a specific
time. The speed of an object tells nothing about
the direction an object is moving. For example,
if information is given that an aircraft leaves
St. Louis and travels at a speed of 200 miles per
hour (m.p.h.) for 4 hours, nothing is known of
the direction in which the aircraft is moving.
At the end of the 4 hours, it could be in Denver,
Colorado, or Syracuse, New York, or, if it had
traveled a circular route, it could be back in St.
Louis. In aviation, speed is measured in nauti-
cal miles per hour, also known as knots.

Principles of Aviation Physics

Velocity is that quantity in physics that denotes
both the speed of an object and the direction
in which the object moves. Velocity may be
defined as the rate of motion in a particular
direction.

The average velocity of an object can be calcu-
lated using the formula:

_ s
vV, = n

where:
V, = the average velocity
V, = the rate of motion or average speed
t = the elapsed time

Acceleration. Acceleration is defined by physi-
cists as the rate of change of velocity, or change
in velocity divided by the amount of time over
which that change took place.

The velocity of an object is increased from 20
m.p.h. to 30 m.p.h., the object has been accel-
erated. If the increase in velocity is 10 m.p.h.
in 5 seconds, then the example used can be
expressed as follows:

A=Y
t

V= V,- V, (for constant acceleration)
where:

A = Acceleration

V, = the final velocity (30 m.p.h.)

V, = the initial velocity (20 m.p.h.)

t = the elapsed time

30 m.p.h. - 20 m.p.h.
5 sec

2 m.p.h.

sec

If the object accelerated to 22 m.p.h. in the first
second, 24 m.p.h. in the next second and 26
m.p.h. in the third second, the change in veloc-
ity is 2 m.p.h. each second. The acceleration is
said to be constant, and the motion is described
as uniformly accelerated motion.

If a body has a velocity of 3 m.p.h. at the end of
the first second of its motion, 5 m.p.h. at the end
of the next second, and 8 m.p.h. at the end of the
third second, its motion is described as accelera-
tion, but is called variable accelerated motion.
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Figure 3-4-1. Vectors, when drawn to scale, can
be used to solve tough mathematical problems.

Vectors. Often the solving of a problem is
very difficult mathematically. This is basically
because we cannot see what is going on. This
is especially true in problems dealing with
length, time, direction, and speed. These types
of problems can be much better understood
graphically than by algebra and trigonometry.

The solution of these problems is called vec-
tor analysis. This study often involves college
courses in engineering. However, simple vec-
tors drawn to scale may solve many problems,
especially those dealing with travel by air.

An example of vector analysis can be shown in
this manner. A pilot flies on a compass heading
of 045° at an airspeed of 140 m.p.h. The wind is
blowing due south at 40 m.p.h. The vector dia-
gram will show where the aircraft is traveling

Figure 3-4-2. Examples of both centripetal force
and centrifugal force.

over the ground and, if it is drawn to scale, the
speed can be computed (Figure 3-4-1).

Circular motion. Circular motion is the
motion of an object along a curved path that
has a constant radius. For example, if one end
of a string is tied to an object and the other end
is held in the hand, the object can be swungin a
circle. The object is constantly deflected from a
straight (linear) path by the pull exerted on the
string, as shown in Figure 3-4-2.

If an object in Figure 3-4-2 travels along the
circumference from X to Y, the pull, or force,
on the string deflects it from Y toward Z. This
pull is called centripetal force, which deflects
an object from a straight path and forces it to
travel in a curved path. Thus, the string exerts
a centripetal force on the object, and the object
exerts an equal but opposite force on the string,
obeying Newton’s Third Law of Motion.

The force that is equal to centripetal force, but
acts in an opposite direction, is called centrifu-
gal force. In the example in Figure 3-4-2, it is the
force exerted by the object on the string. Without
a centripetal force, there is no centrifugal force.

Centripetal forceis always directly proportional
to the mass of the objects in circular motion.
Thus, if the radius of the object in Figure 3-4-2
is shortened, the mass remains the same and
the speed remains constant, then the pull on
the string must be increased since the radius is
decreased, and the string must pull the object
from its linear path more rapidly.

Using the same reasoning, the pull on the string
must be increased if the object is swung more rap-
idly in its orbit. Centripetal force is thus directly
proportional to the square of the velocity of the
object. The formula for centripetal force is:

MV2
cP = —
R

where:
M = the mass of the object
V = Velocity

R = Radius of the object’s path

Section 5

Principles of Heat

Heat is a form of energy on Earth. It is produced
only by the conversion of one of the other forms
of energy. Heat may also be defined as the total
kinetic energy of molecules of any substance.



Some forms of energy, which can be converted
into heat energy, are as follows:

Mechanical energy. This includes all methods
of producing increased motion of molecules
such as friction, impact of bodies or compres-
sion of gases.

Electrical energy. Electrical energy is con-
verted to heat energy when an electric cur-
rent flows through any form of resistance. This
might be an electric iron, electric light, or elec-
tric blanket.

Chemical energy. Most forms of chemical
reaction convert stored potential energy into
heat. Some examples are the explosive effects
of gunpowder, the burning of oil or wood, and
the combining of oxygen and grease.

Radiant energy. Electromagnetic waves of
certain frequencies produce heat when they are
absorbed by the bodies they strike. Included
are X-rays, light rays, and infrared rays.

Nuclear energy. Energy stored in the nucleus
of atoms is released during the process of
nuclear fission in a nuclear reactor or atomic
explosion.

The sun. All heat energy can be directly or
indirectly traced to the nuclear reactions occur-
ring in the sun.

Transfer of Heat and
Sensible Heat

Heat may be transferred from one substance
to another. For example, the sun may heat the
water in a lake or sea. This heat is then stored
and released when the outside air tempera-
ture is less than the water temperature. Other
examples include household heating, water-
cooled engines, and liquid-cooled transform-
ers.

When heat is applied to any substance that
causes the temperature to rise, it is known as
sensible heat. An example would be when heat
is applied to water. The temperature of the
water will rise until 212°F (100°C) is reached.

Latent Heat

Using the example above, when the tempera-
ture of 212°F (100°C) is reached, the water tem-
perature will remain at 212°F (100°C) regardless
of how much more heat is added. This is known
as latent heat, or hidden heat. What is actually
happening is that the additional heat is being
used to transfer the water to steam.
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Dimensional Changes
Caused By Heat

Thermal expansion. Thermal expansion takes
place in solids, liquids, or gases when they are
heated. With few exceptions, solids will expand
when heated and contract when cooled.
Because the molecules of solids are much closer
together and are more strongly attracted to
each other, the expansion of solids when heated
is very slight in comparison to the expansion
in liquids and gases. The expansion of fluids is
discussed in the study of Boyle’s law. Thermal
expansion in solids must be explained in some
detail because of its close relationship to aircraft
metals and materials.

Expansion in solids. Solid materials expand in
length, width, and thickness when they are heated.

An example of the expansion and contraction
of substances is the ball and ring illustrated
in Figure 3-5-1. The ball and ring are made of
iron. When both are at the same temperature,
the ball will barely slip through the ring. When
the ball is heated or the ring is cooled, the ball
cannot slip through the ring.

Because some substances expand more than oth-
ers, it is necessary to measure experimentally the
exact rate of expansion of each one. The amount
that a unit length of any substance expands for a
1° rise in temperature is known as the coefficient
of linear expansion for that substance.

Figure 3-5-1. An example of expansion using a ball and ring.
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Coefficients of expansion. To estimate the
expansion of any object, such as a steel rail, it is
necessary to know three things about it, namely:
its length, the rise in temperature to which it is
subjected, and its coefficient of expansion. This
relationship is expressed by this equation:

Expansion = coefficient x length
x rise in temperature

e=kL(t,~ t)

Where:

e = Expansion

k = Coefficient of expansion

L = Length

t, = Final temperature

t, = Initial temperature
In this equation, the letter k represents the coeffi-
cient of expansion for the particular substance. In
some instances, the Greek letter o (alpha) is used
to indicate the coefficient of linear expansion.
If a steel rod measures exactly 9 ft. at 21°C, what
isits length at 55°C? The value of k for steel is 11
x 10°. If the equation e = kL(t, - t,),
then:

e=(11 x 10°) x 9 feet x (55°C - 21°C)

e =0.000011 x 9 feet x 34°C

e=0.003366

This amount, when added to the original length
of the rod, makes the rod 9.003366 ft. long.

The increase in the length of the rod is rela-
tively small, but if the rod were placed where
it could not expand freely, there would be a tre-
mendous force exerted due to thermal expan-

Coefficient of
linear expansion

Substance (per °C)
Aluminum 24 x 1076
Brass 19 x 106
Copper 17 x 1076

Glass 4t09 x10°6
Quartz 0.4 x 10-6
Steel 11 x 106
Zinc 26 x 1076

Table 3-5-1. Expansion coefficients of some com-

mon substances.

sion. Thus, thermal expansion must be taken
into consideration when designing airframes,
powerplants, or related equipment.

Table 3-5-1 contains the coefficients of linear
expansion for some common substances.

Specific Heat

One important way in which substances differ is
in the requirement of different quantities of heat to
produce the same temperature change in a given
mass of the substance. Each substance requires a
quantity of heat, called its specific heat capacity, to
increase the temperature of a unit of its mass 1°C.
The specific heat of a substance is the ratio of its
specific heat capacity to the specific heat capacity
of water. Specific heat is expressed as a number
that, because it is a ratio, has no units and applies
to both the English and the metric systems.

It is fortunate that water has a high specific heat
capacity. The larger bodies of water on Earth
keep the air and solid matter on or near the
surface of the planet at a fairly constant tem-
perature. A great quantity of heat is required to
change the temperature of a large lake or river.
When the temperature of the atmosphere falls
below the temperature of these bodies of water,
the water gives off large quantities of heat. This
process keeps the atmospheric temperature at
the surface of the Earth from changing rapidly.

The specific heat values of some common mate-
rials are listed in Table 3-5-2.

Material Specific heat
Mercury 0.033
Copper 0.095
Iron and steel 0.113
Glass 0.200
Alcohol 0.500
Water 1.000

Table 3-5-2. Specific heat values for some com-
mon materials.

Methods of Heat Transfer

There are three methods by which heat is trans-
ferred from one location to another or from one
substance to another. These three methods are
conduction, convection, and radiation.

Conduction. Everyone knows from experi-
ence that the metal handle of a heated pan
can burn the hand. A plastic or wood handle,



however, remains relatively cool, even though
it is in direct contact with the pan. The metal
transmits the heat more easily than the wood
because it is a better conductor of heat. Different
materials conduct heat at different rates. Some
metals are much better conductors of heat than
others. Aluminum and copper are used in pots
and pans because they conduct heat very rap-
idly. Woods and plastics are used for handles
because they conduct heat very slowly.

The different rates of conduction in various
metals are illustrated in Figure 3-5-2. There is a
wide variation in thermal conductivity between
different metals. In some cases, the ability of a
metal to conduct heat may be a major factor in
choosing one metal over another. It is interest-
ing to note that the thermal conductivity of a
certain metal has no relationship to its coeffi-
cient of thermal expansion.

Liquids are poorer conductors of heat than
metals. Notice that the ice in the test tube
shown in Figure 3-5-3 is not melting rapidly,
even though the water at the top is boiling. The
water conducts heat so poorly that not enough
heat reaches the ice to melt it.

Gases are even poorer conductors of heat than
liquids. It is possible to stand quite close to a
stove without being burned, because air is such
a poor conductor.

At the point of application of the heat source,
the molecules become violently agitated. These
molecules strike adjacent molecules, causing
them to become agitated. This process contin-
ues until the heat energy is distributed evenly
throughout the substance. Because molecules
are farther apart in gases than in solids, the
gases are much poorer conductors of heat.

Materials that are poor conductors are used to
prevent the transfer of heat and are called heat
insulators. A wooden handle on a pot or a sol-
dering iron serves as a heat insulator. Certain
material, such as finely spun glass, is a particu-
larly poor heat conductor. These materials are
therefore used for many types of insulation.

Convection. Convection is the process by
which heat is transferred by movement of a
heated fluid (gas or liquid). For example, an
electronic tube will, when heated, become
increasingly hotter until the air surround-
ing it begins to move. The motion of the air is
upward. This upward motion of the heated air
carries the heat away from the hot tube by con-
vection.

Transfer of heat by convection may be hastened
by using a ventilating fan to move the air sur-
rounding a hot object. The rate of cooling of a
hot vacuum tube can be increased if it is pro-
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Figure 3-5-2. The different rates at which various metals conduct heat.

vided with copper fins that conduct heat away
from the hot tube. The fins provide large sur-
faces against which cool air can be blown.

When the circulation of gas or liquid is not
rapid enough to remove sufficient heat, fans or
pumps are used to accelerate the motion of the
cooling material. In some installations, pumps
are used to circulate water or oil to help cool
large equipment. In airborne installations, elec-
tric fans and blowers are used to aid convection.

Radiation. Conduction and convection can-
not wholly account for some of the phenom-
ena associated with heat transfer. For example,
the heat one feels when sitting in front of an
open fire cannot be transferred by convection,
because the air currents are moving toward
the fire. It cannot be transferred through

Steam

Metal ring Boiling
to keep ice water
from rising

Figure 3-5-3. Water is a poor conductor of heat.
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Figure 3-5-4. (A) Rankine scale used to convert Fahrenheit to absolute temperature; (B) Comparison of Fahrenheit, Celsius, and

Kelvin temperatures.

conduction because the conductivity of the
air is very small, and the cooler currents of air
moving toward the fire would more than over-
come the transfer of heat outward. Therefore,
there must be some way for heat to travel across
space other than by convection.

The existence of another process of heat transfer
is still more evident when the heat from the sun
is considered. Since conduction and convection
take place only through some medium, such as
a gas or a liquid, heat from the sun must reach
the Earth by another method, since space is an
almost perfect vacuum. Radiation is the name
given to this third method of heat transference.

The term radiation refers to the continual emis-
sion of energy from the surface of all bodies.
This energy is known as radiant energy. It is in
the form of electromagnetic waves, radio waves,
or X-rays, which are all alike except for a differ-
ence in wavelengths. These waves travel at the
velocity of light and are transmitted through a
vacuum more easily than through air, because
air absorbs some of them. Most forms of energy
can be traced back to the energy of sunlight.
Sunlight is a form of radiant heat energy that
travels through space to reach the Earth. These

electromagnetic heat waves are absorbed when
they come in contact with nontransparent bod-
ies. The result is that the motion of the mole-
cules in the body is increased, as indicated by
an increase in the temperature of the body:.

The differences between conduction, convection,
and radiation may now be considered. First, while
conduction and convection are extremely slow,
radiation takes place with the speed of light. This
fact is evident at the time of an eclipse of the sun,
when the shutting off of the heat from the sun
takes place at the same time as the shutting off of
the light. Second, radiant heat may pass through
a medium without heating it. For example, the
air inside a greenhouse may be much warmer
than the glass through which the sun’s rays pass.
Third, although conducted or convected heat may
travel in roundabout routes, radiant heat always
travels in a straight line. For example, radiation
can be cut off with a screen placed between the
source of heat and the body to be protected.

The sun, a fire, and an electric light bulb all radi-
ate energy, but a body need not glow to give off
heat. A kettle of hot water or a hot soldering iron
radiates heat. If the surface is polished or light
in color, less heat is radiated. Bodies that do not



reflect are good radiators and good absorbers,
and bodies that reflect are poor radiators and
poor absorbers. For this reason, light-colored
clothing is preferable in the summer season.

A practical example of the control of loss of heat
is the Thermos bottle. The flask itself is made of
two walls of glass separated by a vacuum. The
vacuum prevents the loss of heat by conduc-
tion and convection, and a silver coating on the
walls prevents the loss of heat by radiation.

Temperature

Temperature is a dominant factor affecting the
physical properties of fluids. It is of particular
concern when calculating changes in the state
of gases.

The three temperature scales used extensively
are the Celsius, the Fahrenheit, and the abso-
lute, or Kelvin, scales. The Celsius scale is
constructed by using the freezing and boiling
points of water under standard conditions as
fixed points of 0° and 100°, respectively, with 100
equal divisions between. The Fahrenheit scale
uses 32° as the freezing point of water and 212°
as the boiling point, and has 180 equal divisions
between. The Kelvin scale is constructed with
absolute 0°C, or -4594°F, as its starting point.
The relationships of the other fixed points of
the scales are shown in Figure 3-5-4(B).

Absolute zero, one of the fundamental con-
stants of physics, is commonly used in the study
of gases. It is usually expressed in terms of the
Celsius scale. If the heat energy of a given gas
sample could be progressively reduced, some
temperature would be reached at which the
motion of the molecules would cease entirely.
If accurately determined, this temperature
could then be taken as a natural reference, or
as a true absolute zero value.

Experiments with hydrogen indicated that if a
gas were cooled to -273.16°C (used as -273° for
most calculations), all molecular motion would
cease and no additional heat could be extracted
from the substance.

When temperatures are measured with respect
to the absolute zero reference, they are expressed
as zero or may be expressed as 0°K, as -273°C or
as -459.4°F (used as -460° for most calculations).

When working with temperatures, always make
sure which system of measurement is being used,
and know how to convert from one to another.
The conversion formulas are shown in Figure
3-5-4. For purposes of calculations, the Rankine
scale, illustrated in Figure 3-5-4(A), is commonly
used to convert Fahrenheit to absolute. For
Fahrenheit readings above zero, 460° is added.
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Thus, 72°F equals 460° plus 72° or 532° absolute.
If the Fahrenheit reading is below zero, it is sub-
tracted from 460°. Thus 40°F equals 460° minus
40°, or -420° absolute. It should be stressed that
the Rankine scale does not indicate absolute tem-
perature readings in accordance with the Kelvin
scale, but these conversions may be used for the
calculations of changes in the state of gases.

The Kelvin and Celsius scales are used more
extensively in scientific work; therefore, some
technical manuals may use these scales in
giving directions and operating instructions.
The Fahrenheit scale is commonly used in the
United States, and most people are familiar
with it. Therefore, the Fahrenheit scale is used
in most areas of this text.

Section 6

Principles of Pressure

The term pressure, as used throughout this chapter,
is defined as a force per unit area. Pressure is usu-
ally measured in pounds per square inch (p.s.i.).
Sometimes pressure is measured in inches of mer-
cury or, for very low pressure, inches of water.

Pressure may be in one direction, several direc-
tions, or in all directions (Figure 3-6-1). Ice, a
solid, exerts pressure downward only. Water, a
fluid, exerts pressure on all surfaces with which
it comes in contact. Gas, a fluid, exerts pressure
in all directions, because it completely fills the
container.

Absolute pressure. As stated previously, abso-
lute temperature is used in the calculation of
changes in the state of gas. It is also necessary
to use absolute pressure for these calculations.

Absolute pressure is measured from abso-
lute zero pressure, rather than from normal
or atmospheric pressure (approximately 14.7
p.si.). Gauge pressure is used on all ordinary
gauges and it indicates pressure in excess of
atmospheric. Therefore, absolute pressure is
equal to atmospheric pressure plus gauge pres-
sure. For example, 100 Ibs. per square-inch
gauge (p.s.i.g.) equals 100 p.s.i. plus 14.7 p.s.i.
or 114.7 Ibs. per square-inch absolute (p.s.i.a.).

Absolute pressure is often measured in inches
of mercury or millibars of mercury. Basically,
a column of mercury in a tube will be 29.92
inches, or 1,013 millibars or 760 mm Hg, at sea
level. This would be equal to 14.7 p.s.i.a.

One of the uses of an absolute pressure gauge is
manifold pressure. This gauge reads in inches
of mercury. During idle, the gauge will read at
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Figure 3-6-1. Exertion
of pressure.
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Figure 3-6-2. Manifold pressure gauge.

its lowest point. When the engine is shut down,
the gauge will read the atmospheric pressure
of the field (Figure 3-6-2).

Another example of an absolute pressure gauge
is the altimeter. This gauge will read feet of alti-
tude based on absolute pressure.

Gauge pressure. Most pressure instruments
used in the aircraft read in what is commonly
known as gauge pressure. This indication
starts at zero from the present atmospheric
pressure. Such indications as oil pressure,
hydraulic pressure and fuel pressure are all
read in p.s.i.g. (Figure 3-6-3).

Cylinder
pressure
gauge

Shutoff
valve

Regulator Piston on ——
control true top
knob dead center
To air

Figure 3-6-4. Cylinder leak-down tester.

FUEL
PRESSURE

Figure 3-6-3. Fuel pressure gauge.

Differential pressure. Differential pressure is
used to compare one pressure to another, as the
name implies. This type of reading may be on
one gauge, or it may require two. It is common
practice to take a differential pressure reading
on reciprocating engine cylinders. In this case,
80 p.s.i.g. is applied to the cylinder through the
spark plug hole on the compression stroke of
the cylinder, and the loss of air is measured.
Readings are shown as 70/80 (Figure 3-6-4).

In other instances, the gauge could read some-
thing else. An example of this is the airspeed
indicator. This measures the difference of ram
air pressure and static, or atmospheric, pres-
sure. This gauge may be read in m.p.h. or knots.

Section 7

Gas Laws

Liquids and gases are both classified as fluids,
and some laws of physics apply to both. Some
of the differences concerning the two are com-
pressibility and volume of gases due to temper-
ature and pressure.

Incompressibility and expansion of liquids.
Liquids can be compressed only slightly, that is,
the reduction of the volume that they occupy,
even under extreme pressure, is very small. If
a pressure of 100 p.s.i. is applied to a body of
water, the volume will decrease only 3/10,000
of its original volume. It would take a force of
64,000 p.s.i. to reduce its volume 10 percent. Since
other liquids behave in about the same manner,
liquids are usually considered incompressible.

In some applications of hydraulics where
extremely close tolerances are required, the
compressibility of liquids must be considered in



the design of the system. In this study, however,
liquids are considered to be incompressible.

Liquids usually expand when heated. This action
is normally referred to as thermal expansion. All
liquids do not expand the same amount for a
certain increase in temperature. If two flasks
are placed in a heated vessel, and if one of these
flasks is filled with water and the other with
alcohol, it will be found that alcohol expands
much more than the water for the same rise in
temperature. Most oils expand more than water.
Aircraft hydraulic systems contain provisions
for compensating for this increase of volume in
order to prevent breakage of equipment.

Compressibility and expansion of gases.
The two major differences between gases and
liquids are their compressibility and expansion
characteristics. Although liquids are practically
incompressible, gases are highly compressible.
Gases completely fill any closed vessel in which
they are contained, but liquids fill a container
only to the extent of their normal volume.

Boyle’s law. As previously stated, compressibil-
ity is an outstanding characteristic of gases. The
English scientist Robert Boyle was among the
first to study this characteristic, which he called
the springiness of air. By direct measurement, he
discovered that when the temperature of a com-
bined sample of gas was kept constant and the
pressure doubled, the volume was reduced to
half the former value; as the applied pressure
was decreased, the resulting volume increased.
From these observations, he concluded that for
a constant temperature, the product of the vol-
ume and pressure of an enclosed gas remains
constant. Boyle’s law is normally stated: The vol-
ume of an enclosed dry gas varies inversely with its
pressure, provided the temperature remains constant.

This law can be demonstrated by confining a
quantity of gas in a cylinder that has a tightly fit-
ted piston. A force is then applied to the piston
so as to compress the gas in the cylinder to a spe-
cific volume. When the force applied to the pis-
ton is doubled, the gas is compressed to one-half
its original volume, as indicated in Figure 3-7-1.

In equation form, this relationship may be
expressed in either of two ways:

VP =V,P,
or

P

=2
P

where V, and P, are the original volume and
pressure and V, and P, are the revised volume
and pressure.
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Figure 3-7-1. Gas compressed to half its original
volume by a double in force.

EXAMPLE OF BOYLE’S LAW: 4 ft’ of
nitrogen are under a pressure of 100
p-s.i.g. The nitrogen is allowed to expand
to a volume of 6 ft*. What is the new gauge
pressure? Formula or equation:

VP, = VP,

Substituting:
43X (100 ps.i.g.) = 6 ft*x P,

_p 4 f£3 X100 p.s.i.g.
2 6 ft?

P, =66.6 p.s.i.g.

A gas that conforms to Boyle’s law is termed an
ideal gas. When pressure is increased upon such
a gas, its volume decreases proportionally and
its density is increased. Thus, the density of the
gas varies directly with the pressure, if the tem-
perature remains constant. Density also varies
with temperature, since gases expand when
heated and contract when cooled.

The useful applications of Boyle’s law are many
and varied. Some applications more common
to aviat